| UNIVERSITA DEGLI STUDI DI ROMA “LA SAPIENZA”
DOTTORATO DI RICERCA IN INFORMATICA

Modelhng Interactwe Computing exp101tmg the
Undo

" Roberta Mancini
IX-96-6 -

Roberta Mancini

Modelling Interactive Computing exploiting the
Undo

DOTTORATO DI RICERCA IN INFORMATICA

1X-96-6

UNIVERSITA DEGLI STUDI DI RoMA “LA SAPIENZA”

AUTHOR’S ADDRESS:

ROBERTA MANGINI

DIPARTIMENTO DI SCIENZE DELL'INFORMAZIONE
UNIVERSITA DEGLI STUDI DI ROMA “LA SAPIENZA”
VIA SALARIA 113, 00198 Roma, ITALY

E-MAIL: ROBERTA@DSI.UNIROMAL.IT

To my mother, Anna

Acknowledgments

I am sincerely grateful to my advisor Prof. Stefano Levialdi, which intro-
duced me to the HCI world. He believed in my scientific ability since I
was an undergraduated student. Following his teaching, I learnt how to do
research.

Many thanks are due to Prof. Mirella Casini Schaerf and Prof. Rocco De
Nicola which, members of the internal thesis committee, provided me useful
comments and suggestions.

I want to thank all my friends and colleagues in Huddersfield (UK), at
the School of Computing and Mathematics, and in Rome, at the Department
of Computer Science, University of Rome, “La Sapienza”. I spent with them
many enjoyable moments and they supported me with their frienship, useful
suggestions and real help.

I am grateful to the Dix family, for their welcome and friendship. In
particular Alan, without which this thesis could not have been possible.
Alan has been, and is, a teacher, a guide, a friend. He taught me not simlpy
how to use formal methods, but to really “feel” them.

A special thought is for my family, for the love, patience, comprehension
and help that they give me. '

Finally, I want to thank God for all He gave me.

iv

CONTENTS

3.5 Undo in collaborativework

Dealing with undo

4.1 Unpredictability of interaction
4.2 Non-determinism from the user’s point of view
4.3 Meaning of undo in interactive systems.
4.3.1 Undo as a recovery function
4.3.2 Undo to have more information on the actual state .
4.3.3 Undo as a navigational tool
4.4 Undo reduces non-determinism
44,1 Granularitylevels.
4.5 ... but Undo adds non-determinism too!

4.5.1 Different kinds of actions
4.6 Undo and risky interaction

Reflections on Undo and Redo

51 Theworldaround Undo
52 Thescriptmodel
5.3 Is Undo part of the commands’ history? e
5.4 Single-action and multiple-action
55 AddingRedo
551 Causality o o
5.5.2 Granularity and repetition
553 Reflexivity e
5.5.4 Commitment points
5.6 Finalanalysis oL

Formal behaviour of backtrack Undo

6.1 Systems with and without Undo
6.1.1 System without Undo
6.1.2 System with Undo

6.2 Encapsulation o L Lo L
6.2.1 Conservativeness of state and history
6.2.2 Conservative extension —thecube

6.3 Algebraic properties forUndo

6.4 The reflexive natureof-Undo

6.5 Behavioural equivalence of backtrack undo

51
51
54
55
57
57
58
59
59
62
62
65

67
68
69
70
72
76
77
78
80
84
85

CONTENTS

7 TUpper and lower bound of backtrack Undo

7.1 The maximal backtrack Undo
7.2 The minimal backtrack Undo
7.3 Existence of a homomorphism for P™** .,
7.4 Existence of a homomorphism for P™™

7.4.1 A new kind of interpretation function
7.5 Existence of a homomorphism for P™"®,
7.6 Categorical representation of backtrack Undo

7.7 Concluding discussion
Conclusions

Bibliography

115
115
119
123
128
135
141
147
152

155

159

Introduction

Human-Computer Interaction (HCI) is a multi-disciplinary area, since it
involves computer science, psychology, ergonomics, In any of these fields,
research has been done in order to understand and improve the interaction,
making it as easy and fruitful as possible. Due to its nature, there is not
a common understanding of an “interactive system”, because a definition,
eventually provided by psychologists, would not take into account all the
aspects relevant to a computer scientist, and vice versa. In this work, we
are going to introduce interactive systems as a subset of the reactive ones
[69] and then describe them in terms of their basic features: modularization,
feedback, dialogue, usability and others. One of such feature is the Undo -
function, which allows the user to cancel the effect of his past action so
reaching a previous state. Interactivity is not based only on the presence of
Undo, yet no real interactive system may live without it. Moreover, during
the requirements analysis, which is the first step in the softfware life cycle
[32], usually, even users which are not computer experts, require a function
which allows them to repair an error. So Undo is not simply a feature of
interactive systems, but it is a real user need.

Someone could argue that Undo is a function typical not only for in-
teractive systems, but also for traditional ones. Some people consider ‘any
recovery function a kind of undo’. The fact that we disagree with this belief,
may be due the lack of a common understanding on the Undo. Moreover,
many kinds of Undo exists. Due to the relevance of this function in interac-
tive systems, we think that a better understanding is important, because the
knowledge of this function and of its potentiality gives strongly contribution
to improve interaction making it more confident and fruitful.

The aim of this thesis is to clarify the scope of the Undo function. Such
a clarification is done at three levels. The first level is inside the world of
reactive systems and recovery functions, in order to place the Undo function
on the map of reactive systems. The second level explores different kinds of

2 Introduction

Undo with which a user can interact. The third level analyses in depth a
specific class of Undo, the backtrack Undo. On the first two levels, we use
a descriptive analysis in order to clarify what exactly Undo means, when it
can be used, on which actions it operates, ..., what do we intend by Redo,
what is the link between Undo and Redo, etc. Conversely, in the third and
last level, we accomplish a formal analysis of a specific undo mechanism:
the backtrack Undo. By applying the PIE model [27], we formally describe
the behaviour of this class of systems and, after introducing the concept of
conservative encapsulation and of behavioural equivalence, we prove some
interesting and useful properties.

Depending on the interaction level, we may consider the set of reactive
systems in Computer Science as organised in ordinary reactive systems, op-
erating systems and application software. In ordinary reactive systems there
is no interaction, but simply reaction between the entities involved in the
communication. In both the other two cases, while working with operating
systems and application software, interaction is present, since there is a con-
tinuous exchange of information between user and system. Moreover, there
is also an immediate computer reaction to any user action, reaction wlﬂch
may be more or less explicitely represented to the user by visual and/or
audio feedback, depending on the nature of the interaction language. The
difference between the interaction with an operating system and an applica-
tion software is in the object of interest of any user action: within operating
systems the object of interest is a file, within application software such object
is the file content.

We call any functions which allows the user to reach a past state a re-
covery function. Morover, since, as just above mentioned, there is more
than one kind of reactive system, we can have different kinds of recovery
functions, depending on the reactive system itself. We have ordinary recov-
ery functions with reactive systems; implicit undo at the file level (implicit
in the sense that a system function called Undo is not available, but it is
possible to reach a past state using some other system functions and/or by
direct manipulation); ezplicit undo at the application level. At this point
we know that we could expect to have an explicit undo only available at the
application level.

Undo is a very important system function, not only because it permits the
user to repair an error, if it occurs, by cancelling the last performed action(s)
(the plural indicates that Undo inay cancel more than one action, depending
on the implementation), but also because it allows the user to handle and

Introduction 3

reduce non-determinism in interaction. In HCI with non-determinism we
mean the impossibility to perform a prediction on an object, impossibility
due to the incomplete knowledge on the object itself. We have a double non-
determinism in interaction: one is from the system point of view, because it is
not possible to foresee the human behaviour; the other is from the user point
of view, because if the user has not a full knowledge on the system states and
behaviour, his predictions may differ from what will really happen. When
the user has not enough information on what he can do with the system, he
combine the visual approach with direct manipulation and navigate through
the system itself. In this case, the use of the Undo function, which allows
to reach a past state, enables him to try different paths while interacting.
Consequently, the user increases his knowledge on the system potentiality,
i.e. he can handle non-determinism. Moreover, when a user performs a
command reaching a different state from the one he foresaw, then there is
some inconsistency between the user and system points of view.

By performing Undo, the user can not only repair an error, but can also
resolve such inconsistencies and can increase his knowledge on the computer
behaviour, so reducing non-determinism. Unfortunately, Undo may also add
non-determinism in interaction, and this happens when it is not available
when we think it is, or when its effect is different from what we foresaw,
that is when the user and system models of the Undo differ. Basically, such
a difference is due to the fact that for the user, Undo is a command, and,
as all other ordinary commands, should act modifying the content of a file.
Actually, Undoe is a meta-command. since its domain of interest is the action
history. We can have two classes of (/ndo systems, one for which it is self-
applicable, that is Undo is forced to belong to its domain of interest, and
its effect may be cancelled by performing another Undo, or one for which
it is not self-applicable, it is not possible to undo the effect of an Undo ,
enabiling it to be used as a backtrack tool.

To order the different kinds of Undo , we provide an informal definition
of Undo and a taxonomy of interactive systems, the last based on the Undo
mechanisms: we consider the repetition of Undo (if Undo of Undo is or is not
allowed) and the granularity (possibility to undo only the last past action or
a block of past actions). Next, we introduce the Redo function, which is not
simply the inverse of Undo . After providing also an informal definition for
Redo, we explain the link and the dependencies between Undo and Redo and
we propose another taxonomy of interactive systems, this time also including
the just introduced function.

4 Introduction

Taxonomies are important to classify the different kinds of Undo, but
they are not able to describe properties of different Undo mechanisms. To
this aim, we need a formal approach. Among the different formal approaches,
we use a black-box model, the PIE model, because we are interested in
describing properties of the system behaviour from the user point of view,
and to this aim a black box model seems to be the most suitable. Using
the PIE model, we describe the behavior of the backtrack Undo. We next
provide a definition of conservative encapsulation, which expresses the idea
that given a system without Undo , and the augmented system enriched by
Undo, the old system is still inside the augmented one.

We introduce a definition of behavioural equivalence between systems,
then proving that all systems P® which are the backtrack Undo of the same
original PIE P are behaviourally equivalent. In such proof, we do not involve
the set of states, since the equivalence is only in terms of the effective history.
Nevertheless, we can say something also on the set of states; in fact, .we
define two particular PIEs, P™% and P™", which are the backtrack Undo
of the same original PIE P, with the “bigger” and “smallest” sets of states
respectively. We prove that for any backtrack Undo P° of the same original
system P, there exists a homomorphism from the set of states of P™%* to
the one of PP, and similarly, we prove that for any backtrack Undo P® of
the same original system P, there exists a homomorphism from the set of
states of P to the one of P™™". The meaning of the two theorems on
the homomorphisms is that, even if we do not have enough information on
the set of states, in some sense we can find an upper bound and a lower
bound. Moreover, we prove that the class of all the backtrack Undo of the
same original system P is a category, whose initial and terminal element
are P™e% and P™in respectively. This means that not only a 0-morphism
between P and PP, and similarly between P? and P™" exists, but also
that such O-morphisms are unique. This means that P™%% and P™" are the
lowest upper bound and greatest lower bound, that is we cannot have more
information than P™e* neither less then ™", Since the maximal system
allows the user to know precisely the actual state and how he reached it, then
he can reduce non-determinism and, consequently, can feel more in control
of his dialogue while interacting. For this reason, during the development
of anh application software, before to choose which kind of Undo has to be
implemented, developers should take in to account also analysis provided
by applying formal approaches, in order to increase the usability of the
application software allowing an easy and fruitful interaction.

This thesis is organised as follows. In Chapter 1 we introduce HCI as a

Introduction 5

multi-disciplinary area and the corresponding formal methods are discussed,
with particular refernce to the PIE model. In Chapter 2 we introduce reac-
tive and interactive systems and we describe properties of interaction lan-
guages. In Chapter 3 we discuss different kinds of recovery function, while in
Chapter 4 we characterise non-determinism in interaction. Different kinds
of Undo mechanisms are analysed in Chapter 5 and two taxonomies of inter-
active systems, based on the different kinds of Undo and Redo are proposed.
In Chapter 6, using the PIE model, we highlight some formal properties of
the class of backtrack Undo of the same original system P, and we prove
that all the backtrack Undo of the same original system P are behaviourally
equivalent. In Chapter 7 we introduce two PIE, P™%% and P™" (having the
“biggest” and “smallest” set of states respectively) and we prove the theo-
rem of homomorphisms from the set of states of P to the one of P?, and
from the set of states of P to the one pf P™". Moreover, we prove that the
class of all the backtrack Undo PP of the same original PIE P is a category
of which P™%% and P™" are the initial and terminal elements. The main
results of this work and possible extension are described in the conclusion.

Chapter 1

Human-Computer
Interaction

Human-Computer Interaction (HCI) is a multidisciplinary area, whose aim
is to understand all the aspects related to the communication between a
human and a computer in order to provide suggestions for designing usable
interactive systems. Since the two involved partners in the communication
are a human and a computer, the aspects of such a communication may be
mainly analised from two different points of view, from the psychology and
the computer science point of view. However, neither analysis from psy-
chology nor computer science is complete, since the suggestions provided by
the phychology are informal and sometimes may not cover all the system
functions, while suggestions provided by computer scientists may not con-
sider all the human or contextual aspects. For this reason, a combination
of contributions from these two main research areas is important in order to
provide guidelines for developing usable interactive systems.

In this Chapter, after an introduction on the origins of Human-Computer
Interaction, a psychological point of view on interaction is given, focusing
particularly on interfaces and on usability aspects. Next, formal methods in
interaction are introduced, giving attention to formal models for interactive
systems. In particular, we discuss formal approaches to dialogue specifica-
tion and analysis, specification of individual interactive systems and generic
models of interactive systems. Among the generic models, emphasis is given
to the PIE model [27] and to some of its basic properties, which will be used
in the following Chapters.

8 CHAPTER 1. HUMAN-COMPUTER INTERACTION

1.1 The origins of Human-Computer Interaction

Since the beginning of the history of computing there has been the need to
improve the communication between a user and a machine, trying to make
such a communication, depending on the available technology, as easy and
comfortable as possible.

One of the first references to an easy and fruitful utilization by a human
of a computer is by Vannevar Bush and dates back to 1945 [16]. In his paper
” As we may think”, he suggested the use of a device called MEMEX:

... A MEMEX is a device in which an individual stores all his
books, records, and communications, and which is mechanized so
that it may be consulted with exceeding speed and flexibility...

He described how the system should function, the way in which informa-
tion could be retrieved, a browser mechanism for books, different indexing
techniques, ... His description foresaw a multimedia system for an applica-
tion of information storage and retrieval. Such a description represented the
first expression for the need of a mechanical tool, to support human work,
fast and easy to be employed by a user. Actually, similar systems exist but,
considering that the first computers appeated in the Fifties, in 1945 Bush’s
opinion looked as science fiction. '

Some years later, in 1960, another view of the importance of the human-
computer interaction has been offered by Licklider [48]. He referred to the
human and the computer as two entities that should work in symbiosis. But
the other important thing that he highlighted was the fact that a computer
should be used not only to solve preformulated problems, but also to solve
problems which could arise during the computation, introducing for the first
time the idea of a partial result:

. Present-day compiiters are designed primarily to solve pre-
formulated problems or to process data according to predetermi-
nated procedures. The course of the computation may be condi-
tional upon results obtained during the computation, but all the
alternatives must be foreseen in advance... ‘

The main computer features that, at the beginning of the Sixties, the
users required, were the time-sharing of computers among many users and
an electronic input-output surface. It was and is extremely important to

1.2. HCI AS A MULTI-DISCIPLINARY AREA 9

see what a user asks to a computer (input) and what the computer itself
provides as answer (output).

Going on with the years, the number of features that a human required
from the computer increased. This is due to the fact that around the Sev-
enties, with the advent of mainframes and minicomputers, an increasing
number of non-programmer users have been forced to insume a strong effort
in using manuals and handbooks before being able to employ a computer.
So good human-computer interaction started to be a real necessity, while in
the Fifties-Sixties it was a proposal, a possibility.

The Eighties, with the intoduction of direct manipulation paradigm [81],
represented really a revolution in human-computer interaction. By employ-
ing direct manipulation, the user is not forced any more to learn, by con-
sulting manuals and handbooks, how to employ the system, but he can do it
by simply navigating through it. Moreover, in order to allow the user to feel
more confident while interacting, different recovery functions are generally
available, so that he can repair an error if it occurs. With the advent of
direct manipulation, the user, his aims, goals, needs, etc, started to have
more and more importance along the development of application software
and human-computer interaction became a real and wide research area.

1.2 HCI as a multi-disciplinary area

The aim of the Human-Computer Interaction (HCI) [53, 32, 50, 73] is to un--
derstand the interaction between a human and a computer in all its aspects
and to provide suggestions and guidance for designing computer systems
which are really usable, that is which allow humans to accomplish their
tasks in a very easy and fruitful way. The involved partners in the commu-
nication in HCI are two: a human and a computer. For this reason, in order
to express properties that an interactive system should have to increase its
usability [5, 80, 63], we need to take into account characteristics of both
partners. In fact, systems developed only taking into account algorithmic,
computational, implementative aspects are often not usable; conversely, the
design of a system provided by a user could be not feasible. For this rea-
son, psychology and computer science must work together. However, also
other disciplines play a very important role in HCI, as linguistics, artificial
intelligence, ergonomics, etc [6]. For this reason, HCI is a multi-disciplinary
area.

10 CHAPTER 1. HUMAN-COMPUTER INTERACTION

1.3 Interaction models

The essence of the interaction between a human and a computer is in their
continuous exchange of information: the user establishes a goal, then pro-
vides an input, the computer provides an answer to the given input, the user
evaluates the feedback and then he can provide another input. Since the
computer and the human have very different characteristics, it is important
to find a common ground in which they can communicate. Such a ground
is represented by the interface, through which the translation from the “hu-
man world” to the computer one (and vice versa) takes place. Anyway, such
a translation can fail for different reasons, and the use of some interaction
models can help us in understanding which are the main difficulties, so that
we can find a way to solve them.

Different interaction models have been proposed [32]. One of the most
influential in HCI has been the Norman’s model, perhaps because it is very
near to the intuitive idea of the essence of human-computer interaction. In
this model, the cycle of user-input/computer-answer is analised only from
the user point of view, and can be seen as composed of two main phases:
execution and evaluation. These may be refined into the seven phases listed
below [65]: '

(1) establishing the goal;
(2) forming the intention;
(3) specifying the action sequence;
(4) executing the action;
(5) perceiving the system state;

)
(6) interpreting the system state;
)

(7) evaluating the system state with respect to the goals and intentions.

The first three phases correspond to the understanding on what the user
has to do in order to reach his aim, that is the understanding on which
task he has to perform and how to accomplish it by employing the com-
puter. The fourth phase is the execution of the established action, while
the fifth and sixth phases correspond to the perception and understanding
of the computer reaction to the previous user action. Finally, the last phase

——

1.3. INTERACTION MODELS 11

PresW wn

S U

perm mon

Figure 1.1: The general interaction framework.

corresponds to the evaluation of the reached state with respect to the user
aim: if the reached state does not reflect the user aim, then he can formulate
another goal and repeat the cycle. This final “evaluation” phase suggests
the possibility of errors occurring, being deteced and corrected. This detec-
tion and recovery from error as part of interaction is one of the reasons why
most interactive computer systems now support some form of undo. We will
return to this issue in succeding chapters.

As said before, the Norman’s model analises the interaction cycle only
from the user point of view, whereas the computer is simply considered as
the interface. Another interaction model, explicitly involving the computer,
is the general interaction framework, proposed by Abowd and Beale [2].

In this model, represented in Figure 1.1, we have four components, the
system (S), the user (U), the input (I) and the output (O). After the user
has identified his goal and what he has to do in order to reach it, then he
must provide his input to the computer. To do this, he needs to articulate
his request in the input language. In the following step, the input is trans-
lated into the system language, and the system executes the required action,
which, at this point is presented to the user as output. The user observes
the result and, evaluating it with respect to his aim, can decide to eventu-
ally start again the interaction cycle. In this model, the input and output
components meet on the interface, which is the communication channel be-
tween a human and a computer. Such a communication is bidirectional: one
direction is from the human to the computer (the input), the other is from
the computer to the human (the output).

12 CHAPTER 1. HUMAN-COMPUTER INTERACTION

1.4 The interface

The user interface is the part of a system the users interact with. It is hard to
describe good user interfaces by words without showing them, and it is even
harder to write about something that is interactive without presenting it
interactively. But, then, what is a good interface? The best ones are those
that a person cannot see, i.e. are transparent, so there is no interference
between the user and the task, e.g. writing on paper [61]. There are different
ways in which a human and a computer may communicate, depending on
the different interfaces, i.e. on the interaction styles. In the taxonomy on
man-computer interaction by Ben Shneiderman [81], the advantages and
disadvantages of five interaction styles are illustrated: menu selection, form
fill-in, command language, natural language and direct manipulation. Visual
and graphic approaches are powerful representation of the ‘world of action’
[34], which include selectable displays of objects and operations. Then, by
pointing, zooming and panning these objects, the user can rapidly perform
actions, immediately see their results and, if needed, reverse the last action
(undo). ‘

In computer science applications, interface design is taking more and
more into account the results of psychological research. Neuro-physiological
processes, such as brain reaction to different visual patterns or different
responses to color and brightness, contribute to attention focusing and in
this way heavily influence knowledge acquisition conditions, when exploiting
visual learning. This leads to a new way of interpreting human interaction as
a whole, and in particular to the need to take into account human behaviour
and responses for an adequate design of computer interfaces. The focus
of this design has moved from an application-centered approach, often too
difficult to be understood by users, to a more user-centered perspective.
Following a user-centered approach, the users are involved in different ways
during the development of an application software, e.g. as part of the design
team, subjects in user analysis studies, as main actors in simulation sessions
and in evaluation activities, they can also comment on working versions of
systems.

In order to evaluate how “good” a user interface is, several aspects need
to be taken into account, because a user interface is not composed only of
separate hardware and software elements. Therefore, its quality depends
partially on the hardware (e.g. how display resolution or processor speed
impact on the decisions), partially on its functionality (e.g. whether the
user goals can be reached with the system) and partially on its usability

1.5. USABILITY ASPECTS 13

(e.g. how easily users can accomplish their tasks).

Recently, emphasis has been posed on evaluation techniques, since there
are several reasons to evaluate systems. People involved in developing soft-
ware products are interested in evaluations to assist in making design de-
cisions and to determine whether or not the products achieve the quality
measure that must be met. Cognitive psychologists have been interested in
evaluating software in order to study general aspects of human cognition. In-
dividuals, who buy the software because they want to use it, need to evaluate
the software before purchasing it to check whether it answers key questions
about usability. Even if there is some similarity in the various approaches,
since they are all trying to answer whether the system adequately meets the
needs of the user, the above interests are not served by a single evaluation
methodology. For this reason, a variety of techniques have been proposed
[22]. |

1.5 Usability aspects

The concept of usability, very difficult to grasp in a single, natural definition,
has been expressed in the literature with a variety of schemes different from
each other. Some of the most significant will be mentioned below. Beginning
in 1971, Miller [58] gave his definition of usability in terms of ease of use.
Much later, in 1991, Shackel [80] gave another definition, an operational one,
considering four factors:

(a) effectiveness, defined as the requested range of tasks that must be
carried out at better than a determined performance level; those tasks
must be performed by a required percentage of a specified range of
users;

(b) learnability, which refers to the performance achieved after some spec-
ified time, using some specified amount of training and support;

(c) flexibility, defined as adaptation to some specified range of variation
in user tasks;:

(d) attitude, which refers to acceptable levels of human cost (e.g. fatigue,
discomfort) and perceived benefits.

More recently, in 1993, Badre [5] defined usability of a software product
as ease of learning and ease of use: this means that less effort should be

14 CHAPTER 1. HUMAN-COMPUTER INTERACTION

required to the user to perform a task and also that he should make less
errors. In the last years usability has became one of the major research
areas in HCI, so that the need arose to provide a standard definition. Two
accepted definitions are:

e ISO 9126 [41] (software product evaluation): “A set of attributes of
software which bear on the effort needed for use and on the individual
assessment of such use by a stated or implied set of users”. '

e ISO 9241 Part 11 [42] (ergonomics requirements for office work with
Video Terminals): “The effectiveness, efficiency and satisfaction with
which specified users can achieve specific goals in a particular environ-
ment”.

MUSIC (Metrics for Usability Standars In Computing), an Esprit Project
(Esprit Project #5429) [54], has provided some tools to measure its quanti-
tative components, i.e.the measurable elements of the quality of interaction
between the user and the overall system. Its definition is “the extent to
which a product can be used with efficiency, effectiveness and satisfaction
by specific users to achieve specific goals in specific environments” [51]. As
we can see, this definition is in accordarnce to6 the reccomandation of the ISO
9241- 11 (see above). Bevan and Macleod say in [52] that the quality of
interaction can be measured taking into account three factors:

(1) the effectiveness, i.e. the extent to which the established goals of the
system can be achieved;

(2) the efficiency, i.e. the resources as time, money, mental effort spent to
achieve the established goals;

(3) the satisfaction, i.e. the degree of acceptance of the overall system.

They also emphasize that the measures of the three above mentioned
quantitative elements do not depend only from the product characteristics,
but they are also a function of the context in which the product is to be
used. Their scheme, reported in Figure 1.2 (from [52], page 7), illustrates
the components of usability. This scheme clarifies that the usability has,
as main components, three quantitative elements that make up the qual-
ity of interaction, but these ones are tightly binded to the overall system
components, i.e. the elements that compose the context. These are:

(1) the users, in fact (as we said in the previous sections) it is fundamental
to know the real user, his knowledge, experience and needs;

1.5. USABILITY ASPECTS

effectiveness
efficiency
satisfaction

users

task goals

Quality of
interaction

Usability

overall
system

equipment

enviromment

Figure 1.2: Usability components.

15

16 CHAPTER 1. HUMAN-COMPUTER INTERACTION

(2) the task goals that the system allows the user to achieve;
(3) the equipment, i.e. hardware, software and materials;

(4) environment, i.e.the physical and social environments which may in-
fluence the interaction.

System developers should perform different analyses on users:

(a) user characterization: it involves attempting to capture all of the in-
formation about the target user groups that is relevant to the proposed
system;

(b) task analysis: it involves attempting to understand user’s goals and
activities, as well as tools they use and environment they work in;

(c) situation analysis: it involves an appreciation of the situations that
commonly arise as part of the user’s normal work activities, and a
consideration on how these might affect both the user’s needs and
preferences.

(d) acceptance criteria: it refers to understanding users’ requirements and
preferences, which then form the acceptance criteria for the system.

The above mentioned analysis are related to psychology, ergonomics,
artificial intelligence, ..., but, in order to be fruitfully exploited by designers,
such analysis should express concepts in a clear and unambiguous way.

1.6 Formal methods in HCI

In HCI, all the contributions from different research areas need to be properly
understood by all the partners of the design process in order to be correctly
used. The use of formal methods, based on precise notations and mathe-
matical models, allows the different partners which collaborate in the design
process to provide their contributions in a precise, clear and understandable
way.

Formal models may be used to describe the system, the user, the task.

Different formal methods have been proposed in the literature for mod-
elling the system’s interface behaviour [29, 1, 32, 15, 40, 68, 67].

Cognitive models [17, 13, 79] may be used to describe in a formal way
users and tasks.

1.6. FORMAL METHODS IN HCI 17

Architectural models [23, 71] are employed describe the structure of a
usable system which can be refined in an executable version, still mantaining
the usability propeties.

Focusing on the first of these three types of model, interactive systems
may be formalised at three different. levels [25]. They are

e dialogue specification and analysis;
o specification of individual interactive systems:
e generic models of interactive systems.

Formal methods may point out problems and inconsistencies of a system
before it has been implemented. If all, or the main, problems are highlighted
at the beginning of the development, then the following steps of the life
cycle of an application software will need very few modifications and so the
testing time will be reduced. The employment of formal methods does not
guarantee the usability of a system. However, some formal properties (such
as predictability, observability, reachability, ...} are necessary for usability,
and if a system does not satisfy such principles, then it may be unusable in -
many circumstances.

Dialogue specification and analysis

In HCI, dialogue refers to the structure of communication between a human
and a computer. It is extremely important to formalise and analyse dialogues
in order to eventually find usability problems before the system has been im-
plemented. There are different notations which may be employed to specify
a dialogue. Basically, such notations may fall in two classes, diagrammatic
and textual.

The diagrammatic notation is easy to read since the designer can see at a
glance the structure of the dialogue. State Transition Networks (STN) [38] is
one of the most widely used models. Itis based on transition diagrams, which
are diagrams made by circles (to represent states) and arcs (to represent
transitions). Each arcis labelled with the name of an action. This notation is
useful in order to represent a sequential and iterative portion of the dialogue;
it is not the most suitable to represent concurrent situations; in this case,
Petri Nets may be a more suitable notation [9, 10].

Textual notations are easier for a formal analysis; the most widely used are
grammars and production rules.

18 CHAPTER 1. HUMAN-COMPUTER INTERACTION

Analysing a formally described dialogue, interesting properties may be
verified. For example, with a diagrammatic notation it is easy to verify if
the dialogue is complete or not; in fact, in the last case, there is an action
which cannot be performed in some state. Another property that is easy to
verify is non-determinism. If, starting from the same state, there is more
that one arc with the same label, then the dialogue is non-deterministic for
that action. Both completeness and non-determinism are properties related
to the action. An interesting property related to the state is reachability. A
dialogue has the reachability property if any state may be reached, that is,
if the diagram which represents the dialogue is fully connected. Often, the
consistency property is analysed for the dialogue described with a textual
notation. In [79] the authors give an example on how to analyse consistency
by applying Task-Action Grammar. A deep discussion on dialogue is in [32].

‘Specification of inidividual interactive systems

An abstract mathematical description of an interactive system, before its
development, is useful to explore the validity of design choices. By reason-
ing on the formal description, rather than on the real system, the eventual
problems are discovered at the beginning of the developing phase.

In [75] Christopher Rouff points out the seven issues which make a spec-
ification formal:

e written
e communicable
e mathematical
o precise
. unambiguous
o. supports analysis
. supborts reasoning and predric’tion.ﬂ
He also provides three main reasons fbr_using formal notations:

o they give a precise and unambiguous description of the functionalities
considered:

e they constrain designers to clarify aspects of their design;

el

1.7. THE PIE MODEL 19

o they allow designers to reason on their systems.

Formal specifications can also be used for analysis and verification of
interactive systems.

A system specification may be done using some existing notation, as Z
or the Act-One languages. A specification may also be done only for some
component of the interface, not for all the system.

Sometimes, an existing and general pourpose formal notation may not be
suitable to specify components of the user interface. To this aim, some new
notations have been introduced. Usually, they arise as a modification of an
existing one, or by a combination of different notations. An example of these
is given by ICO [10], which is a formalism based on Petri nets and on the
object-oriented approach.

In order to understand the behaviour of some component of the interface,
it may be convenient to abstractly describe such a component as an object
and then to describe with a formal notation the behaviour of such an object.
An interesting example is provided by the interactor model [36].

Generic models of interactive systems

Abstract models are used to describe properties of a class of interactive
systems, not of a specific one. An abstract model may be employed during
the first phase of the development of an application software, i.e. the users
requirements. Usually, such requirements are informal, and it is difficult
to map something informal in logical and realizable steps which have to be
implemented. Moreover, if the system description is informal, we cannot
say precisely if the system satisfies the requirements or not. An abstract
model may help in filling the distance between informal user requirements
and formal specification, distance which is usually called the formality gap
[29]. An example of abstract models is the PIE model [27] which we will
discuss in the following Section: other abstract models are given in [43, 24]

1.7 The PIE model

The PIE model is a black-box model. With a black-box model it is possible
to describe the behavior of an interactive system only in terms of the perceiv-
able effects, without taking into account implementation aspects. The PIE
describes a system in terms of its inputs and of the corresponding effects.
The input is a command ¢ or a sequence of commands, belonging to a set

20 CHAPTER 1. HUMAN-COMPUTER INTERACTION

N

output

Figure 1.3: The black box model

of legal commands C. A program p is a command sequence, while P is the
set of programs. All inputs are interpreted by a function I (Interpretation
function), producing an effect e, which is the output; the set of the effects is
E. Due to last three used capital letters, this model is called PIE. An impor-
tant feature of this model is the flexibility of the space of the effects, which
may be seen as the display observed by the user, or as all the content of a
file, or as all the information available to the user. Also the set of programs
is flexible. It may be seen as keystrokes or mouse movements of a sequence
of more abstract operations of a specific domain provided by the user or the
system. The choice of a black-box model has different advantages. The main
advantage is that it represents an interactive system from the user point of
view, that is without taking into account the internal structure. Moreover,
it allows to express properties of interaction which are independent from the
domain and from the implementation. Its behaviour may be mathematically
represented, so the properties are precise and may be proved.

We can define a PIE as a triple < P,I, E >, or we can expand the
interpretation function as follows:

I:P—>FE

Each PIE may also be described in term of states and transition func-
tions. Indicating with .S the set of states, we can define the transition func-
tion doit as:

doit: S xC — S
starting from the initial state s,. The doit function is a very simple way to
describe interaction.

In order to obtain an effect from a state, we need a function, a projection
from all the state information te that regarding the effect: proj: S — E

1.7. THE PIE MODEL 21

In this manner, we can handle a PIE as a sextuple < C, S, E, s,, doit, proj >
instead of a triple.

1.7.1 Predictability

One principle that an interactive system should guarantee is predictability,
for which the user, starting from the current effect, should be able to predict
the behaviour of the system once a commands sequence has been entered.
At this point we have to introduce some definitions and properties regarding
the commands sequences which are equivalent or seem to be so ([29, 32, 84]).

Given two different commands sequences p and ¢, we say that p is equiv-
alent to ¢ if they have the same interpretation. We can define an equivalence
relation =; for any PIE:

p=rq = I(p)=1(g)

Most current systems allow the user to obtain a particular effect in more
that one way. but, following more than one path, different internal states
may be reached. When we are in this situation, we say that such an effect
is ambiguous. Formally, indicating the concatenation of command with ‘~7,
we have:

ambiguous(e) =
Ap,g,reP st. I(p)=e=1(g) and I(p~r)#I{g—~r)

The ambiguous effects are due to the different command histories.

If no effect is ambiguous, we say that the PIE is monotone.

monotone : Vp,¢,r € P I(p)=1I(q)=I{p~r)=I(qg ~)

The monotone property says that it is possible to predict the future
behaviour of the system from the current effect. The last property allows
us to introduce another definition of equivalence, the monotone one =,
Given two different sequences of commands p and ¢, we say that they are
monotone equivalent if they have the same interpretation and, once entered
any command sequence r, they continue to have the same interpretation.
Formally,

p=tq = I(p)=1I(q) and Vr € P.I(p~7)=1I{qg ~)

With the monotone equivalence, what looks the same is the same. If the
PIE is monotone, then we can talk about effects or states indifferently. In
this case we have that E = (P/ =') = S, where P/ = is the quotient of P
on the monotone equivalence and S is the set of the reachable states. From
the definition of monotone equivalence we have that

p=tq = I(p)=1(q)

22 CHAPTER 1. HUMAN-COMPUTER INTERACTION

which means that = = =;. We may call =; weak equivalence.
If the PIE is monotone, we can express the doit in terms of the interpre-
tation function, as follows: :

I(null) = sg;
Vp,q € P, doit(I(p),q) =I(p —~ q)

1.7.2 Reachability

An important property of the PIE model is completeness. A PIE is complete
if any effect is produced by the interpretation of a suitable program: this
implies that the interpretation function is surjective. The completeness of a
PIE représents the simplest reachability condition. With the term reachabil-
ity we intend' the possibility for the user to obtain a wanted effect starting
the computation at any state. If, after a program p, the computation has
been interpreted with an effect e = I(p), and the user wants to obtain an ef-
fect €', he must find a suitable program » such that I(p ~ r) = ¢’. Formally,
we say that '

Vee E:Vp e PRPareP:I(p~r)=¢€

This implies that a PIE has the reachability property if the interpretation
function I is not only surjective, but surjective ¥p € P. The above definition
is called strong reachability.

A special case of reachability is undo, with which the user can reach
the previous state. If we consider P as a semigroup, provided with right
program concatenation as the associative operation, the monotone equiva-
lence is a right congruence. It is natural to study the full congruence, where
the equivalence is preserved in all contexts. This equivalence is the strong
equivalence, which we indicate with ~ . Two programs p and ¢ are strongly
equivalent if they produce the same effect, with the same history and with
the same future action. Formally we have:
p~qg =Vrse P I(r~p~s) =1I(r~qg~—s)

. With the canonical projection we move from P to the quotient P/ ~ for
which the null command is the identity element.

Later we will suggest that undo is also a form of reachability. There are
different kinds of undo and the strong equivalence will be very important in
describing the required properties. Undo can be seen as a function which
modifies the command history. One type of undo considered in [29] is the
existence of a function

Undo: P — P, such that p ~ Undo ~ null
such that with such an undo the quotient set P/ ~ is a group.

1.7. THE PIE MODEL 23

P I > E

parse proj
' I ' | !
P > E

Figure 1.4: Isomorphism between PlEs.

1.7.3 Relations between PIEs

Given two PIEs, < P, I, E > and < P’, I’ E' >, we say that an isomorphism
between them exists if there exists two one-to-one relations, parse : P — P’
and proj : E — E’, such the diagram of Figure 1.4 commutes. A special
case of isomorphism between PIEs is given by < P,I,E > and < P, I/ =;
, E/ =r>, in which parse is the identity and proj is a one-to-one function.
Usually, the proj and parse are general relations, sometimes with restriction
on parse. A special kind of relation is given considering both proj and parse
as functions; the major cases follows:

o 1 — morphisms: both parse and proj go in the same direction;
o 2 — morphisms: parse and proj go in opposite directions;

o 0 — morphisms: either parse or proj is one-to-one.

The 0 — morphism is a special case of morphism in which either parse or
proj is one-to-one, that is 1-morphism and 2-morphism coincide. In Chapter
7 we will consider 0-morphism where parse is the identity. As this is the
only kind of 0- morphism used in the thesis, we will use 0-morphism to refer
to this case from now on.

An exhaustive discussion on PIEs and relations between them is given
in[29, 28].

24 CHAPTER 1. HUMAN-COMPUTER INTERACTION

p—L >F
D

Figure 1.5: The Red-PIE

1.7.4 The Red-PIE model

The PIE model may be refined in order to distinguish between two different
characteristics of the space of the effects: the result and the display. The
result is the final product of the interaction between a human and a com-
© puter, while the display represents intermediate and ephimeral aspects of
the effects. . ‘

The PIE refined with result and display is called red— PI E. This model is
an enrichment of the original PIE with other two functions, result : £ = R
and display : E — D, where R is the set of results and D is the set of
displays. A diagram of this model is provided in Figure 1.5.

The PIE model has been used to analyse different properties of interactive
systems. One of these is the WYSIWYG (what you see is what you get)
principle, for which what the user can see is really what he gets. In the Red-
PIE model, WYS is given by the display, while WYG is given by the result.
Important properties of interaction may be characterised as relationships
between result and display. One of these is the predict function,
predict : D — R
Vs € E, predict(display(s)) = result(s)
for which starting form any display, it is possible to predict which will be
the result. '

The basic concepts of the PIE model, introduced in this Section, will
be used in Chapter 4, 6 and 7 in order to describe properties of interactive
systems with and without undo and the relationships between them.

Chapter 2

Interactive Systems

In this chapter, an interactive system is defined as a subset of a reactive one.

‘HCI is a particular kind of interactive system, in which one of the involved

entities is a human.

In order to allow a dialogue between entities which use very diverse lan-
guages (as it happens for humans and computers), it is necessary to support
the communication with suitable interaction languages. Such languages al-
low the user to communicate with the computer in a way that is as easy
and comfortable as possible, yet necessarily depending on the nature of the
application, the user needs, skills, background, etc.

Differences between interactive languages and traditional ones will be
highlighted. In particular, since the main feature of interactive systems is
represented by the feedback, the explicit answer to any user action, emphasis
will be given to the pragmatics in interaction languages accounting for the
interpretation of the feedback.

Since visual interfaces may be seen as interaction languages which allow
the user to reach high level of interaction, their properties are discussed in
this chapter and a model of human-computer interaction based on the visual
approach is proposed.

Finally, a table including the main characteristics of interactive systems
is shown.

2.1 Reactive systems in computing

Sometimes the words interactive system have been improperly used, or as
buzzwords, not always based on a full understanding of their meaning.

25

26 CHAPTER 2. INTERACTIVE SYSTEMS

Most computer users think that an interactive system is a computer,
provided with a visual interface and a mouse. Probably, this is due to the
fact that visual interfaces and mice represent the main components of the
most common and spreaded interactive systems. But it is not a mouse or
a visual interface that makes a system an interactive one. To clarify what
an interactive system is, it may be useful firstly to introduce the concept of
reactive system.

The notion of reactive system is extremely natural, and, as well as all
the innate and obvious things, difficult to express. It is a very general
concept and may also be applied to different fields. In fact, many examples
of reactive systems are offered by nature, particularly in the world of biology
and chemistry. A broad definition considers a reactive system as a complex
whole, a set of entities in which any component is able to provide a response
to an external stimulus [70].

An interactive system is a special case of a reactive one: it may be seen as
a set of entities which are able to provide a reaction to an external stimulus
not only once, but many times, so generating a sequence of stimuli and
responses between at least two entities.

In the computing world, an example of reactive system RS is given by
the computer and all the entities, internal and external to it, which are able
to give, and/or react to, external stimuli, external in the sense that they are
provided by another entity of the same system. Also in this case, as in the
real world, an interactive system IS is a subset of the reactive system RS
[69]. Any entity of this reactive system may be seen as a process, an object,
or what Milner [59] defines as an agent. :

Examples of elements belonging to RS are those processes Wthh are
activated by system fuctions. In this case there is no dialogue, but 31mply a
communication of a stimulus from a sender process to a receiver one, which
is then activated.

Interactive processes are those processes that react one to the stimuli of
the other and a continuous exchange of information, i.e. stimuli, between
the two communicating processes, is present.

HCI is a special kind of interactive system, in which the two involved
entities in the communication are a human and a computer. This means
that the interactive system involved in HCI is given by-the computer and the
user, not by the mouse and the visual interface. The mouse and the visual
interface represent tools, (which are not unique) for communication between
the two involved entities.

Figure 2.1 shows the hierarchy of a reactive system in computing. The

2.2. DIALOGUE 27

Figure 2.1: The hierarchy of reactive systems in computing.

external set represents the reactive system RS the interactive system IS is
a subset of RS and the inner set is HCI: in this way we have the following
hierarchy: HCI C IS C RS. .

Since the aim of this thesis is to focus on aspects related to HCI, in
Figure 2.1 we may also skip the interactive processes that do not involve
humans (for example agents in expert systems). In this way the hierarchy
is reduced to HCI C RS (see Figure 2.2).

In the following Sections, dialogue [32] and communication aspects in
HCI will be discussed.

2.2 Dialogue

Each entity involved in any communication requires the ability for reciprocal
comprehension in order to partecitate to a dialogue. Such a dialogue happens
in a natural way when the involved partners are humans that use the same
spoken language. This becomes more difficult, or even impossible, when the
communication occurs between entities that are using different languages:
the more “distant” the languages, the more difficult the communication.
Within HCI dialogue refers to the structure of the communication be-
tween a human and a computer. The kind of communication to which most
humans are used is the verbal one, employing a spoken language; on the con-

28 CHAPTER 2. INTERACTIVE SYSTEMS

Figure 2.2: HCI is a subset of reactive systems in computing.

trary, the language of the computer is made by 0 and 1 strings. Since humans
and computers use two different languages, in order to allow communication
between them, it is necessary to provide a support to the interaction: a
suitable interface.

The interface is the medium [33] through which such a communication
takes place. There is not a unique interface style, and, the reason for the exis-
tence of such a plurality is due to the fact that interfaces change with evolving
technology. During this transformation, slower at the beginning and faster
in recent times (because of the speed of technology changes), interfaces grad-
ually evolved, passing through the command-line, question-answers, form-
filling, menu interfaces [80, 44], until the actual visual approach and virtual
reality environment present today. The interfaces evolution does not imply
that the past interfaces may no longer be employed. In fact, the choice of the
most suitable interface depends on the aim of the application, on the kind
of task that the user has to perform, on the users class, etc. The change of
interface styles is the result an attempt to improve HCI, making it as close
as possible to the human-human communication.

Any interface style is an interaction language [85]. The more natural and
easy the language, the higher is the interaction level that a human can reach
while interacting with a computer. By level of interaction we mean a kind of
dialogue ordering: the closer human-computer communication is to human-
human, the higher the interaction level. Traditional programming languages

2.3. INTERACTION LANGUAGES VERSUS TRADITIONAL ONES 29

and the last generation of interaction languages -the visual approach and
virtual reality environment- represent the opposite poles along the rank of
interaction levels, while all the other interface styles are in the middle.

Of course visual interfaces and virtual reality, the last generation of in-
teraction styles, are not the final result of this research, but certainly in the
future a further evolution of an interaction environment will be provided.
Actually, one of the most common interface styles, combined with the use
of a mouse, is the visual one, due to the fact that this approach makes in-
teraction as simple as possible, basing the communication on the essence of
interaction, on the action-reaction cycle. In the action-reaction cycle, the
user sees an object, provides his input and observes the result produced by
the computer, so becoming the integral part of a loop [31].

Moreover, interactive systems are not a barrier for handicapped people.
On the contrary, interactive systems, provided with suitable devices, may
represent an important step to allow handicapped people to become more
and more part of the society. In fact, depending on the nature of the hand-
icap, different interaction languages may be provided. Particularly, systems
suitable for blind people are based on audio tools [74].

2.3 Interaction languages versus traditional ones

A comparison between a spoken language, an interaction language and a
traditional programming language may well show the power of interaction
languages.

Any spoken language is based on words as a sequence of elements be-
longing to a finite alphabet of symbols. Such words may represent any of
the nine parts of speech: noun, adjective, article, verb, etc. In traditional
programming languages we have elements with a role similar to the parts
of speech: a variable as a noun. a pointer as a pronoun, a data type as an
adjective, a function (in a broad sense, considering both subprograms and
operations) as a verb, etc [37].

Using a spoken language, we do not declare any part of the speech; for
example, before using the word “tree” in a conversation, we do not say that
“tree” is a name. We simply use that word, without any declaration, because
the fact that it is a name is implicit, it is given by the (previous) knowledge
of the grammar of the employed language.

When using a programming language, the compiler or interpreter recog-
nises the lexicon and syntax and checks the correctness of the lexical and

30 CHAPTER 2. INTERACTIVE SYSTEMS

synctactical forms, but the computer does not know whether pl is a pointer
or a function, if pl has not been declared in the program.

When using whatever interaction language, as in a spoken language, there
is no declaration of any “part of the speech” by the user. This means that
there is no explicit knowledge of the lexicon, because the last is naturally
provided by the interface, as fields the user has to fill, or menu items, or
icons, etc. depending on the kind of interface style.

Less immediate may be how to properly handle these elements, that is
the syntax. Employing a traditional programming language, any user has
explicitely to learn, by consulting books or manuals, the syntax of the chosen
language, employing time and, often, much effort is required. Moreover, a
correct syntax may not ensure that a prefixed goal may be reached: this
may only be done with a correct interpretation of the statements, that is the
semantics. So, before starting to program, a user has to learn the lexicon,
syntax and semantics of the chosen programming language.

Conversely, while using an interaction language, the syntax is driven by
semantics, in the sense that the order of execution depends on what the user
wants to obtain. In this case, the interaction itself is task-driven, because
any user action is motivated by what the user is interested in achieving.
In particular, for interfaces styles that allow a high level of interaction, the
syntax is immediate, and, in only a few situations, the system forces the user
to do some actions following a well established execution order.

2.4 Pragmatics in Interaction Languages

When using a traditional programming language, the pragmatics, i.e. the
interpretation of computation results and their consequences, has not been
considered strictly related to the lexicon, syntax and semantics of the em-
ployed language. We generally talk about syntax and/or semantics of in-
structions, while we talk about results of computations. Due to the nature
of traditional programming, it is not possible to use partial results in order
to provide the next input; in fact, the computation result is interpreted at
the end of the computation itself and the programmer may agree with it
or not; if not, some changes may be done on the data and/or instructions
before starting again the computation. Pragmatics is also implied in this
case -with the interpretation of the results- but is considered external to the
computation itself, in the sense-that the programmer can use it only at the
end, not while the program is running.

2.4. PRAGMATICS IN INTERACTION LANGUAGES 31

User System
- = - — r‘
L L
g S e e S S
P y
e Yy X X e
r mll D i i ? m
a a t c I € . a a
81| a o 0 n
m t X n n X t
a i) i
e 1l .
. C . C
i . s
el 7 -
.

Figure 2.3: Different dimensions of the interaction language and system
language. '

On the contrary, within interactive systems, the interpretation of results
plays a very important role, since it is the “engine” of the interaction.

Actually, in interactive systems it is not only important to have a cor-
rect interpretation of the user actions, but also of their consequences. Such
consequences are not merely the feedback, but the interpretation of the feed-
back, i.e. the pragmatics, depending on the physical workiﬁg environment,
the user aim, 'kno'wjledge,» expectations, etc. The result of the interpretation
is the basis for the successive user action.

In Figure 2.3 the dimensions of interaction and system languages are
_-schematised. The same user action has a double interpretation: one is from
the system point of view, and generally humans ignore it, while the other
is from the user point of view, which is exactly the one in which the user
is interested. In the pragmatics, as the interpretation of the feedback, is
intentionally lacking in the system language, so the schema results unbal-
“anced. In fact, if we introduce pragmatics to the system’s language, we may

32 CHAPTER 2. INTERACTIVE SYSTEMS

User System
______ | - - _y_ m _
next
action " .
dep- click | ["Couri- ttem | f ek | [Fhangd
ends change | on er’ I n | imousel the
on ;che Font | | item %) | | down| | font
userq | ©M | |menu on(xy] | I
. in || . | Courid
aim, - Couri -
meeds or -er”
etc, item

Figure 2.4: An example of the different dimensions of the user and system
language. '

imply that the system is adaptive [19], yet the purpose of this thesis is not
specifically to deal with adaptive systems, but, more generally, to interactive
ones.

By using interface styles which allow high interaction level, the system
may be considered as a black box.

Employing a visual interface, for example, it is not important for the
user to know that, working with a word processor, if he clicks on the menu
in the location (78.45, 182.12) he can change the font of the selected text
from the actual one to Courier, but it is important to know that if he wants
to change the font of the selected text he can choose, from the Font menu,
the font he needs, for example Courier (see Figure 2.4). This not only means
that the interaction is semantic-driven, but also that for the user the system
is in fact like a black box: he is only interested on what he can provide as
input, and the system could return as output, on the surface of the black
box, i.e. he does not care about- the contents of the box itself [46].

2.5. THE VISUAL APPROACH 33

2.5 The visual approach

As said in the previous Sections, visual languages, provided with a suitable
device (very often a mouse) allow the user to reach a high level of interaction.
In this Section, we are going to account for the power of visual languages.

In the field of computer science, the term ‘visual’ refers to something
which is represented in a graphical, bidimensional manner, in contrast with
a linear, textual one. For example, in a command line interface a text doc-
ument is specified only by its name (textual, linear representation), while in
an iconic interface it is indicated by an icon, which is graphical and bidi-
mensional. Visual languages allow the user to directly handle instructions
and data, both visually represented by the interface of the employed appli-
cation software. One of the main features of the visual approach is that it is
more immediate with respect to the traditional one: actually, with a simple
glance, it is possible to know which objects we can handle and also their
different nature (for example, icons representing files are different from the
ones representing folders or applications).

Moreover, such an approach is based on the visual representation of both
objects and language constructs, making it independent from the user native
language and so being usable by a wider number of people.

The lexical level of a visual language may be considered as the set of
visual signs which one user can perceive and understand by looking at the
screen, and which may be provided by the user himself as input or by the
system as output. Such visual signs (buttons, geometrical shapes, icons,
menu items, etc.) are handled by the user simply as data or program func-
tions, without any particular knowledge about them. Under the surface of
the application software, i.e. the interface component communicating with
the computer, the programmer makes a clear distinction among the diverse
nature of the displayed objects. with an explicit declaration of data types,
links, subroutines, etc.

The actions which one user can perform, which are the events, are very
easy to produce: it is possible to click once or twice on visual objects, or to
drag them, or to enter commands by using the keyboard.

The user does not need to learn the syntax of the visual language (even-
tually it is the lexicon which may create more trouble: in fact, the user may
have some problem in understanding the metaphor that is associated to any
visual object [18]), because it is immediate; he simply navigates through the
system producing events using a suitable device. If the user himself tries to
perform a forbidden action, as when if he is following an incorrect syntax,

34 CHAPTER 2. INTERACTIVE SYSTEMS

the system will highlight this situation by opening a dialogue box, or by
means of a “beep”, or simply by not executing the last entered command.

When the syntax is not immediate and needs some other specification,
the system usually refines the dialogue with a submenu or dialogue boxes.

We can say that the syntactic level in visual languages is represented by
the legal arrangements into which visual signs, displayed on the screen, can
be organized by the user as input or displayed by the system as output.

The sequence of user actions; that is the interaction history, is strictly
related to the semantics of the actions themselves. In fact, any user event
is motivated by what the user himself wants to obtain: for example, if he is
interested in' opening a file, he can select the item “Open” from the menu
title “File”, or may enter the equivalent command with the keyboard, or
by a double click on an icon. Along this way, the interaction is driven by
semantics, since any user command is chosen according to its interpretation
from the user point of view. In a semi-formal way, we can say that the
semantic level represents the meaning of the communication, the effect of
the user actions. As a consequenceé, from the system point of view, such a
~ level represents what the system is going to do, while from the user point of
view it represents what the system should do, after having received an input.

In HCI the importance of pragmatics is directly proportioned to the feed-
- back that the system provides to any user action. For this reason, the more
the interface style allows a high level of interaction, the more the pragmat-
ics become important, since the pragmatics provides the interpretation of
the feedback, in order to establish the next user input. In visual languages,
in a semi-formal way, we can say that the pragmatic level represents the
perception of visual signs on the interface and their understanding by the
user.

A model of human-computer interaction, based on the visual approach,
is proposed in Figure 2.5. In this model, syntax; semantics and pragmatics
are merged together in the user mind, while the visual representation of
elements (lexicon) is displayed on the interface.

From the user point of view, when he is using a visual language, he is han-
dling the data directly, without any other medium in between. Instead, he
is performing a dialogue through a language and, what he imagines as data,
is really a visual representation of the data on the surface of the application
software with which he is working.

We can say that the power of the visual approach is in the reduction of
the gap between the user language and the system language, allowing an
interaction as easy as possible so increasing the usability of the application

2.5. THE VISUAL APPROACH

| System
User world , world

L

e L S

e

U y

semantics | f n

and pragmaticq ¢ c t

o o a

n n X

U’O""""'J.NB(DU]

Figure 2.5: Interaction and system languages.

36 CHAPTER 2. INTERACTIVE SYSTEMS

software [57].

2.6 Features of interactive systems

In the last Sections, we informally described the dialogue, the way in which
a user can provide his input to an interactive system, but we have not said
what an interactive system is. In next Chapter we will provide a defini-
tion, while in this Sectioni we are going to describe an interactive system in
terms of its main feaures, which differentiate it with respect to a traditional
system. To do this, we consider both the perceivable features (as the feed-
back, recovery functions, ect.) which a user can perceive simply interacting,
and the internal ones. The last are related to the code structure, so that
only the programmer knows them, but their presence strongly influences and
chracterizes interaction.

Looking at an interactive system from a programmer point of view, its
code presents a strong modularization. This fact was and is present also
in traditional programming languages, but only as a functional structure,
without any direct consequence for the user. In fact, such a modularization
is at the processes level: its effects are only inside the black box.

Conversely, in interactive systems, the presence of modularization as-
sumes a different importance: it is used here to break down a problem into
many subproblems, as much as possible independent each one from the oth-
ers. Such subproblems are small blocks of code, which may represent agents
or objects and, depending on the adopted interface style, are represented on
the surface as fill-in forms, menu items, icons, buttons, etc. Differently from
traditional programming languages, with interactive systems the user can ex-
ploit the effect of modularization. In fact, the code modularization happens
under the surface of the application software and the user does not realise
what is happening. But, after the interactive application is started, the user
can provide his input to the computer, employing event-driven and/or an
agent-based approach, by choosing the order of the modules execution, or-
der which depends on what he needs/wants to do. This means that now
the computation is not forced anymore to follow the way envisaged by the
programmer, but is driven by the user. Naturally, the user cannot always
perform everything in the order he wants, since he has to do any actions
following the right syntax. But the constraints that have to be respected
are usually more or less a “natural” (depending on the interaction level)
representation on the computer, step by step, of the task the user is going to

2.6. FEATURES OF INTERACTIVE SYSTEMS 37

perform. We can say that the main consequence of modularization in inter-
active systems is that, by being present on the interface, it may be exploited
by the user in order to drive the interaction.

Synchronization, as well as modularization, was and is present in tra-
ditional systems too. In traditional systems, synchronization problems are
related to system processes and those generated by the execution of a pro-
gram. However, the processes generation is pre-planned and usually a good
utilization of semaphors and monitors may be enough to guarantee a correct
system functioning by handling critical sections. In interactive systems the
situation is similar, except for the fact that processes may be also activated
by the user, without any pre-planned strategy. This means that the num-
ber of concurrent processes and synchronization problems may be higher in
interactive systems. :

The above mentioned properties are not enough to describe interactive
systems, not only because the idea of modularization is old and imported by
the traditional programming approach, but also because, in this way, many
systems, such as the Unix operating system, may be classified as interactive,
or highly interactive, because of its inherent modularization.

In fact, the main consequence of modularization is the feedback, the
fact that the user can have an immediate knowledge about the computer
answer to his previous input. Such feedback is the computer answer to the
execution of a module and it is not the final result of the whole computation,
but instead any feedback represents a partial result.

For this reason, operating systems without an immediate communicated
reaction to any user action may be considered simply as reactive systems,
not interactive ones. But, since by employing some suitable commands, the
user can have some information on the system state, he can have a kind
of indirect feedback, for this reason such operating systems may also be
considered interactive, but with a very low level of interaction (as Unix).

The role of interactive systems changed with respect to the employment
of traditional computers. In fact they are not used anymore for numerical
computation only, but particularly as a tool which helps users in their daily
work; which allows communications and cooperation between users (also
far located); which may be employed as a navigational tool to explore the
system.

Comparing the traditional way of computing and the one performed with
interactive systems, in the last we no more have an initial and a final state
of the computation but, if we consider the initial state as the opening of an
application or file, and the final state as its closing, in interactive systems

38 CHAPTER 2. INTERACTIVE SYSTEMS

we also have a lot of intermediate states: the partial results of the computa-
tion. Moreover, the interpretation of the partial results (pragmatics) is very
important during the interaction because, depending on those, the user will
decide which will be his next action.

Furthermore, it is also important for the user to obtain a computer an-
swer to his input in an acceptable amount of time. Also for traditional
programming, timing aspects are important in order to reach the end of a
computation (the result) as soon as possible. But in interactive systems a
delay in answering not only can annoy the user, with a consequent. change
of his attitude with respect to the computer, also influencing the usability of
the application with which he is working, yet it can also cause a breakdown
in interaction [30].

As mentioned before, the aim of interactive systems is different with re-
spect to traditional ones; and special attention is given to the fact that they
allow the user to navigate through the system. Employing the traditional
approach, not only there is only one user, the programmer, but also his ac-
tivity is totally pre-planned, since every forseen action is represented within
the code and the user can not modify the program execution. The visual
approach, instead, combiied with direct manipulation, allows the user to
have an exploratory attitude while interacting. In this way the user can
have information on how the system is functioning and on what he can do
when using such a system. ‘

The ability of the user to navigate through the system allows him to have
more information on the system functionalities, being so able to employ it
correctly. When the user does not know how the system is functioning, he
cannot do prediction on its behaviour: this means that the system is non-
deterministic from the user point of view. Moreover, because interaction is
driven by users and there is not a physical law which controls the human
behaviour, the interaction is non-deterministic, even if the computation is
still deterministic. Since there are two communicating partners in HCI, non-
determinism is double: from the computer point of view, when it is not able
to foresee human behaviour, and from the user point of view, when he is not
able to foresee the system behaviour. Aspects of non-determinism will be
discussed in Chapter 4.

Within an environment in which the user at any step decides the way to
be followed, he may realize immediately whether the last performed action
is wrong or not, that is whether the last reached state is the expected one
or not. If not, in order to repair the error, the user needs a system function
which allows him to delete the effect of the last performed action(s), so

2.6. FEATURES OF INTERACTIVE SYSTEMS 39

reaching a past state.

The user can realise that the reached state is wrong if he knows how
the system is functioning. If he does not know it, the user can then exploit
the visual approach combined with direct manipulation in order to navigate
through the system. In this case he cannot realise if the reached state is
wrong or not, but he can decide if the reached state is useful or not to him.
In case it isn’t, the user needs to change the direction of interaction, going
back in the interaction history and following, from that point, another way.

If the user thinks he knows how the system is functioning, but he reaches
a state that is different from the one he was expecting, then there is a
mismatch between the two semantics, one from the user and the other from
the system point of view. In this case. a system function which allows the
user to reach a past state, not only allows him to repair errors, but also
increases his knowledge on the system behaviour. ,

At this point, the importance and the usefulness of a specific recovery
function to be applied after any feedback is quite clear: the undo functions.
Such undo is explicit when an Undo function is explicitely available on the
interface of the application software with which the user is interacting, im-
plicit when it is possible to obtain the same effect of an explicit undo, but
by employing other interactive functions. ‘

Last, but non least, there are usability aspects [5]. While in the Sixties
and Seventies the usability of an application software was a desirable, but not
necessary quality, since the Eighties usability becomes a compulsory feature.
In order to ensure that a system is effective, efficient and easy to use [52],
real users have been more and more involved in the system development.

Figure 2.6 collects all the above mentioned properties. Such properties
are qualities, attributes, internal code and system structures, ... but there is
only one system function which characterizes interactive system with respect
to the traditional ones: the Undo function. Being linked to the feedback,
undo may be present only in interactive systems, while in traditional ones
we can have only recovery functions (see Chapter 3). Moreover, by allowing
the user to have more information on the system behaviour (when the user
navigates through the system) and/or on its internal structure (when there
is a mismatch between the user and system point of view), undo allows the
user not only to delete the effect of the last past action(s) but also to handle
and resolve non-determinism during interaction. In the following Chapters,
undo will be deeply discussed, initially as a system function from the user
point of view, and, successively, discussing its formal properties.

40

CHAPTER 2. INTERACTIVE SYSTEMS

systemd ‘
properties Traditional Interactive
) {event-driven,
modularization (functional) agent-based)
desirable essential
present present

synchronization

(system processes)

(system and user processes)

computation, daily work,

aim computation communication,
havigation tool
computatior only initial and initial, intermediate
states final states and final states
feedback no yes
pragmatics not really present strongly present
timing aspects important but nof basic
basic
user ’
re-planned explorato
behaviour prep P Y
| computation deterministic,
. 5})1’ ;tgm deterministic interaction
enaviour noti-deterministic
only recovery recovery functions
recovery functons plus implicit / explicit undo
usability desirable a compulsory

property

Figure 2.6: A comparison between traditional and interactive systems along
a set of significant properties.

Chapter 3

Recovery Functions

Undo is a special kind of recovery function. Since it is strictly related to
the feedback that a computer provides to any user input, we can talk about
undo only in interactive systems.

A differentiation between reactive and interactive systems is proposed
and, for both, recovery functions are discussed. Such functions are ordinary
recovery functions, implicit and explicit undo.

A lot of emphasis will be given to the automatic recovery functions in the
databases environment, in order to introduce the definition of checkpoints,
necessary in the following Chapters to discuss in depth the undo function
and its internal structure.

Finally, in the last Section, undo in collaborative work will be introduced
in order to provide a description of undo also in a multi-user environment.

3.1 Different kinds of recovery functions

Much work has been done on the undo, but until now it is not very clear how
we have to deal with it and which way has to be followed when developing
an interactive system. Really, undo represented a big problem since the
beginnig of the use of computer [45], also for systems of the ‘old generation’,
used particularly for computational problems, and very far from the idea of
interaction which actually is natural while using a computer.

But what is the undo? Is undo a function, a command or whatever? In
[3] Abowd and Dix make a clear distinction of the meaning of undo from
the user and system point of view. From the system point of view, undo is a
function, and as one, does something; from the user point of view, undo is an

41

42 CHAPTER 3. RECOVERY FUNCTIONS

intention, the intention to recover a past situation. This recovering could be
done employing any system function, not only undo. Nevertheless, it would
be useful for the user to have a suitable tool helping him in pursuing his
aim. This tool, as we will see in the following, is the explicit undo function.

An important feature of RS in computing is that they provide functions
(manual and/or automatic) which allow to repair errors whatever they oc-
cour. These functions are usually called recovery functions, because they are
used to recover a past state.

The idea to have a computer provided with a tool which allows to change
the past actions is not new. Turing himself in 1937 described an hypotetical
machine able to perfom any symbolic computation that a mathematician
can do with paper, pencil and rubber (from [84], pag. 84). Actually, we
have different kind of recovery functions, depending on how, when and on
which objects each one of them acts. Any function which changes the system
state from the actual to a previous one, is a recovery function. If the user
can change the state by himself while interacting, we are in the presence of
undo functions. This undo is explicit (see Section 3.4) when it is available
on the interface as a menu item or as a button, it is smplicit (see Section 3.3)
when it is possible to reach a past state by using some interactive system
functions, but not an explicit undo. k »

In HCI we can distinguish two kinds of interaction: interaction with the
operating system and interaction with an application software. When a user
is interacting with an operating system, he is acting at the file level, i.e. the
objects he can handle are files. When he is interacting with an application
software, the object of interest is the content of a file.

In RS only ordinary recovery functions are available. At the file level,
ordinary recovery functions and implicit undo are available. Within an ap-
plication software, both implicit and explicit undo are available. Moreover,
within an application software it is also possible to perform any ordinary
recovery function since, by applying some system functions, the working en-
vironment may be changed, moving from the application level to the file one,
in which any ordinary recovery function may be used.

The above considerations allow us to refine the hierachy of interactive
systems proposed in the previous Chapter by differentiating HCI in HOSI
(Human-Operating System Interaction) when interacting with an operating
system, and HAI (Human-Application Interaction), when interacting with
an application software. The resulting hierarchy, based on the availability
of recovery functions, is shown in Figure 3.1.

Considering the different kinds of recovery functions and the just pro-

3.2. ORDINARY RECOVERY FUNCTIONS ' 43

Figure 3.1: The hierarchy of reactive systems in computing.

posed hierarchy, the following proportion holds:

Recovery Functions : RS = Implicit Undo : HOSI = Undo : HAI

In the following Sections, recovery functions, implicit and explicit undo
will be discussed.

3.2 Ordinary recovery functions

When we talk about the possibility to reach a past state in a reactive system,
we mean the possibility to handle data that have been already used. In order
to do this, it is possible to employ two kinds of recovery function: one is
manual and the other is automatic.

Manual recovery functions are system’s functions activated by humans;
even if there is a human, there is communication, not interaction, between
him and the system. This is due to the amount of time which elapses be-
tween user-action/computer-reaction and the following user action. A typ-
ical manual recovery function is given by the functions backup and restore,
used respectively to back up data on secondary storage, and to restore them.
The backup function copies the file(s), provided as input to the function it-
self, from the disk to a secondary storage device (generally floppy disk or
magnetic tape). If, while working, the user realises that his data are not
correct, for problems due to the computer or simply because he realises that
there is a mistake in what he is actually doing, he can re-use the old data
saved by the backup. To do this he can employ the restore function, that

44 CHAPTER 3. RECOVERY FUNCTIONS

copies the data from the secondary storage, used for the backup, to the disk.
The time which elapses between the two actions backup/restore is usually
long (weeks, months or years!); for this reason we have symply reaction, not
interaction between a user and an operating system when employing such
recovery functions.

Mechanisms for automatic recovery are system programs that check the
system status : if they found inconsistencies, they try to resolve them, chang-
ing the actual system state into the last right one.

An example of these functions is represented by the field of database
systems [11]. Broadly speaking, we can say that the scope of the databases
is the data storage and retrieval, mantaining data consistency. If a datum
is added to the datahase -removed or updated- in order to mantain data
consistency, the same modification has to be done at any occurrence of the
same datum in the database. This means that a logical operation may
be composed by more than one instruction. The collection of instructions
necessary to perform a single logical operation is called transaction [82].
Actually, we can see a transaction as a sequence of read-write operations,
plus a “label” (abort or commit) to indicate the result of the transaction.
The meaning of a committed transaction is that the transaction terminated
successefully, while the meaning of an aborted transaction is that some logical
error occourred during the transaction. Since the data resides in-the stable
storage, while any modification is done in the volatile storage, it is important
to save in the stable storage all the modifications caused by the transaction.
To this aim, periodically, there is a checkpoint, that is the new value of the
data will be saved in the stable storage.

If a transaction aborts, or a system failure occurs, some data may have
been updated and some other not, because of the incorrect execution of the
transaction: for this reason it is necessary to restore the data to the value
that it had before the transaction started. In this case we say that the
transaction has been rolled back. In order to restore a previous situation,
it is necessary to mantain information regarding all the modifications done
during the execution of a transaction. These informations are collected, as
a sequence of records, in a data structure called log. Before a transaction T;
starts its execution, the record < T; starts > is added to the log. Then, for
any write operation, a record is added to the log, mantaining information
on the name of the transaction, the name of the data item, the old and new
values of the data. The write is executed after the correspondent record
is added to the log. After any checkpoint, a < checkpoint > record is
added to the log. If the transaction T; terminates successefully, a record

3.3. IMPLICIT UNDO 45

< T; commaits > is added to the log.
If the system has a crash, we may be in one of the following three possible
cases:

1. the record < T; commits > is present in the log before the record
< checkpoint > , this means that all the updated have been recorded
in the stable storage and there is no need to redo, that is to perform
the transaction again;

2. the records < T; starts > and < T; commsits > are both present in
the log after the last checkpoint, so the effect of the transaction has
not been recorded in the stable storage and the transaction has to be
executed again, that is the system invokes the redo procedure;

3. the record < T; starts > , but not < T; commuits >, is present in the
log before the checkpoint, then some data have been updated in the .
stable storage and some not; so, in order to maintain consistency, the
undo procedure is invoked to recover the past value of the data.

The undo procedure removes the effect of the last transaction if not all the
data have been updated in the stable storage. Naturally, the implementation
of the undo depends on the kind of the application software, but the meaning
of the word “undo” is the same as in the interactive application, i.e. to cancel
the effect of a performed action. In this case, to delete the effects of action(s)
performed after the checkpoint.

The redo procedure executes again a transaction whose effects have not
been recorded in the stable storage at all. There is no strict connection
between undo and redo, in the sense that redo is not the inverse of undo,
but there is a loose connection among them, since undo and redo are related
both to transactions “not committed” and “not stored’.

The procedures “undo” and “redo” above mentioned are recovery func-
tions, not undo functions, as it will be explained later in the following Sec-
tions. In this case they are automatic functions; it is the system that decides
when and whether to apply them.

3.3 Implicit undo

When a user is interacting with an operating system, as for example the
Macintosh one, he has an immediate feedback (indirect as in the case of the
Unix or direct and immediate as in the Macintosh environment) for any of

46 CHAPTER 3. RECOVERY FUNCTIONS

his actions. Because of the feedback, the user can immediately realise if the
reached state is wrong or not. In case the reached state is wrong, he can
use some system functions to cancel the effect of a past action. This may be
- done implicitly, in the sense that no system function is explicitly available
allowing the user to revert the effect of an action he has performed. For
example, in the Macintosh environment, if the user has just moved a file
from a directory A to a directory B dragging an icon between two different
windows, and he wants to revert this action, he cannot use the explicit undo
function because it is not available on the menu, but he has to drag the icon
from the actual window into the old one, so he has to perform the inverse
operation. Also for an Open (file) or Close (always file) function an explicit
undo is not available, but in order to delete the effect of an Open, the user
can perform a Close and vice versa. Confirmation boxes are also examples
of implicit undo. A common example of confirmation is after an Fzit, when
a dialogue box Ezit now? with ‘Exit’ and ‘Cancel’ as option is opened.
Pressing the ‘Cancel’ key the user can implicitely undo his Ezit action.

At the file level it is easy to delete the effect of a performed action
using the implicit undo. Why implement an explicit undo, which could be
very espensive in terms of implementation effort, memory and execution
" time required; when it is possible to obtain the same effect without any
extra memory or programming effort, and, particularly, in a way which is
immediate and easy to the user? This is the philosophy that is behind the
implicit undo. However, there are functions for which an implict undo is not .
available. An.example is given by functions which allow the user to have more
information on a file or directory. Since the user is receiving information, this
action cannot be deleted, because it is not possible to remove information
from the user knowledge. The change should be done to the user’s knowledge,
not to the object wlich is still the same. The fact that functions which allow
the user to have more information are not undoable in some sense is natural
and useful. Conversely, it is not very usefull that “delete a file” has no undo,
neither implicit nor explicit!. Most of the actual systems ask a confirmation
“before deleting a file (as the Empty trash function), but a confirmation is not
enough, since a user could make a mistake and, non intentionally, remove the
file. However, being HSOI C RS, the user can apply a recovery function
(backup-restore), prov ided that he has a copy of his file

'In the Macintosh environment, the deleting of a file is done by moving the icon,
representing the file, from his posmon into the trash (assuming that it is not yet in the
trash!). This action has as implicit undo - moving the icon out of the trash. The Empty
tr aah function, after conﬁxmatlon effectively. deletes the content of the trash. '

3.4. EXPLICIT UNDO 47

Some operating systems also offer another kind of implicit undo, that is
the Stop function. Since the main feature of interaction is the immediate
feedback, the user may sometimes realise that his last performed action is
wrong before that the new state has been reached. A typical example of this
is given by a double click on an icon producing the opening of a file or of an
application. The Stop function, allows to stop the running process without
waiting until the application is opened in order to close it (Netscape has such
a function).

3.4 Explicit undo

Usually, when we are interacting with an application software, an undo func-
tion is available on the surface as a menu item or as a button. Such a function
is explicit, since the user can identify it (by reading the name or by recog-
nising the icon) and employ it when necessary. _

The functions belonging to the set of explicit undo are undos, redos and
mechanisms which allow the user to browse the past history. The plural
(undos, redos, browse mechanisms) is used because we can have different
implementations of undo functions, depending on the kind of the application
software. Undo functions are usually classified into two groups, one for which .
undo is self-appliable (see Chapter 5), that is the effect of an undo may be
cancelled applying a following undo (flip undo), and the other for which
undo is self-appliable, that is undo of undo may be used as a backtrack tool
(backtrack undo) [56].

Flip undo is employed in the most popular Macintosh and Windows ap-
plications: the user may cancel only the effect of the last performed action.
If no redo function is available, a subsequent invocation of an undo, immedi-
ately after a previous one, has no effect. Nevertheless, if redo is available, it is
possible to restore the state into which the system was before the invocation
of the first undo of the eventual sequence.

Suppose, for example, that a user is working with a word processor and
he is writing the sequence of characters A B C D E. The typing of any
character may be considered as an action, so the action history is given by
the same sequence. The invocation of the undo modifies the history in A
B C D; if no redo function is available, then any other undo invocated at
that state is idempotent. If a redo function is available, as an explicit redo
or as the undo of undo, then the user can reach again the previous state
modifying the history in A B C D E. This is simply an external behaviour,

48 _ CHAPTER 3. RECOVERY FUNCTIONS

by considering the single undo from the user’s point of view. We really
need to have more information on the system state. This situation, together
with the backtrack undo, has been introduced in [56] and will be plentifully
discussed in Chapter 5.

With the backtrack-undo we intend a kind of undo which allows the user
to delete the effects of the past user’s actions starting from the last performed
one. The iteration of undo may be employed as a backtrack tool which allows
the user to go back along the action history, until reaching eventually the
initial state. The backtrack-undo is used in many popular application, such
as NetscapeT™ and MicrosoftWordT6.0. In the situation of the above
mentioned example, the successive undo invocations modify the history in
this way: A B C D, A B C, etc. until, eventually, reaching the initial state.

Besides the explicit undo, any other system function that allows the user
to reach a past state is implicit undo. Consider, for example, again a text
editor, in which, after having typed a word, it may have the same effect to
perform an explicit undo, or to select the word and perform a Clear, or to
select the word and type Delete, or directly type Delete as many times as
the number of characters to be deleted.

In HAI the undo function assumes a very important role, more than in
RS or HOSI. In fact, its importance is due to the feedback. The more the
feedback is immediate and evident, the more it is important for the user
to have a tool which allows him to recover a past state. The fact that the
user can employ the undo, allows him to navigate through the system in
a comfortable and confident way, since he knows that, if he performs some
mistakes, he can cofrect them. So undo seems to be a magic tool, which
increases the power of interaction and the user thinks he can do everything,
because, if he is wrong, he can use undo. In practice it is not so, and it
often happens that when the user tries to perform undo, this function is not
available at that time.

3.5 Undo in collaborative work

Undo functions, as we will see in the following Chapters, are very complex
functions and, for this reason, it is better to analyse them starting from a
single user environment. in which problems of concurrency and conflicts for
the resources are reduced. In this thesis, undo in collaborative work will not
be deeply discussed. but, in order to provide a wide description of undo in
different contexts, we are going to shortly introduce it.

3.5. UNDO IN COLLABORATIVE WORK 49

With the term collaborative work we intend at least two users that share
data and cooperate through a computer. In this case the users may have
problems of resources, if both of them require access the same data at the
same time; problems due to delays, if the users are distant and one of them
tries to update a datum which really has been already modified by another
user; problems due to the undo. In fact, after employing undo, which one
will be the deleted action? The last performed action, but performed by
which user? Or the last performed action in a global sense? The answer to
these questions is given by the kind of undo implementation, which may be
global or local. With local undo, any user has an ‘independent working life’
and the invocation of undo removes only his last performed action, while
with the global undo the last action performed in all the document activity
will be undone, independently from which user performed it. The global
undo seems to be easier to implement, since the system needs to keep trace
only of one stream of user’s actions, while for the local undo the system
needs to keep trace of as many streams of user actions as the number of
users. Problems related to undo in collaborative work have been analysed
in [72, 3, 89].

In [72] the authors suggest an undo which is neither local nor global, but
selective. With the selective undo [12] a user chooses the action to delete.
However, his choice cannot be done arbitrarily, because a past action can
have had consequences on the following, always past, actions. If an action
A precedes an action B and they are independent, in the sense that A does
not influence B and the execution order is not important, then the user can
select A, can move it from the actual position in the history to the last one
and finally can apply the global undo. Moreover, the user has to be sure
that no other user is working using the action he is interested in undoing;
for this reason, some exclusion mechanism is required.

Exclusion mechanisms are discussed in [3], in which the authors suggest
another solution to the undo problem in collaborative work. They suggest
the implementation of a local undo, so that any user can know (this happens
whenever he knows howand on what undo is functioning) what he is undoing,
with the addition of some exclusion mechanism in order to resolve conflictual
situations.

With the exclusion mechanisius at any time, depending on the necessary
operation, only one user is able to update the data. Such an exclusion may
be controlled by a mechanism of explicit or implicit lock.

If the cooperating users are working with a text editor, with explicit
locking, a user that has explicitly locked a portion of a document, performs

50 CHAPTER 3. RECOVERY FUNCTIONS

his update and then releases the document. During the time in which the
document is locked, no other user can access the same resource.

With the implicit lock, the locking of a portion of text is done by the
system when a user starts to update it. When the user starts to do something
not involving the locked text, or after a timeout, the system releases the lock.

Another exclusion mechanism is represented by roles: each user assumes
a role with respect to each object of the document. Such roles may be author,
‘co-author, etc. Depending on the roles, a user can read, write, modify the
data.

Finally, the third analysed exclusion mechanism is represented by copy-
ing. By doing a copy of the object of interest, any user is working on it
as in the single-user environment and, being private, there are no conflicts
of concurrent accesses to the same resources. Of course copying should be

~done with locking; otherwise more users could have also different copies of
the same data and may try to modify them concurrently.

Problems typical of collaborative work may be also found in a single user
environment: it suffices to think about multi-window systems. A typical
example is represented by the word processor Word 5.1. Suppose that a
user has opened two files, using two different windows, A and B, in Word
5.1. Suppose that he performs an action in window A and then he simply
changes window, making B the working window but without performing any
action on it. If he performs undo, the last active action (for a definition of
active actions, see Chapter 4) will be undone. In this case, the last action
was in A, so the system changes the working window and deletes the last
performed action in A. The consequence of this global undo is to disorient
the user, since he thinks the undo is acting only on the working window, i.e.
the user is thinking in a “local undo” mode.

Multi-user environments are open systems. Their behaviour is extremely
difficult to predict, moreovér such difficulty is increased by the presence of
humans that are unpredictable. Undo, as we will see in the next Chapter,
may help in handling and reducing unpredictability. From the user’s point of
view, a local undo is the most easy and natural kind of undo in collaborative
work. So it is not a surprise that the successive release of Word 5.1, Word 6,
has been improved also in implementing a local undo instead of the global
one.

Chapter 4

Dealing with undo

In this chapter we are going to take into account the unpredictability and
non-determinism in interaction. When a user is in control of his dialogue,
that is he knows the system state and the system behaviour after any user
action, then the interaction is predictable. Undo functions, implicit and
explicit, help the user in handling non-determinism when he is employing
such functions as navigational tools. and/or in reducing non-determinism
when he is employing them as recovery functions. From the user’s point of
view, non-determinism in interaction is seen as the risks the user can face
while interacting. Undo, the explicit undo, is a powerful tool to reduce such
risks in interaction. Unfortunately, not all the functions at the application
level may be undone; moreover, Undo may behave differently in distinct
situations. The result of this, is that Undo also adds risk in interaction: the
more powerful the system, the higher the risk!

4.1 Unpredictability of interaction

Predictions have always been very important to humans. This happened
and happens because, in order to predict something, it is necessary to know
the object of the prediction, and such a knowledge is, in some sense, a form
of control, of power. For a human, a prediction about something is the
expression of his power on that thing. It is possible to use such a knowledge
in order to exploit the resources of the world to which the knowledge itself
is related. It is easier to do predictions when science is involved, as for
example in predicting the return of the Halley comet, or when there will be
a high or low tide. It is possible to do very precise predictions in a closed

51

52 CHAPTER 4. DEALING WITH UNDO

world, controlled by mathematically described physical laws, because these
are independent from human behaviour [8]. But when humans are involved
in something, it is not possible to do predictions any more. Human behaviour
does not follow a physical law. From a human’s point of view, we say that
something is non-deterministic when it is unpredictable.

Within the computation theory the word non-determinism represents the
fact that, starting from the same state, it is possible to perform the same
action in more than one way, so reaching different states. The behaviour of
a non-deterministic machine may be well modelled by a tree, in which any
node represents a state, and more than one arc with the same label (all the
arcs with the same label represent the same action) may depart from the
same node [78, 47, 60, 49, 14]. This means that, from the same starting
state, performing the same operation, it is possible to reach different states
following different paths along the tree. Any branch of the tree represents a
deterministic computation, but it is not possible to foresee -a priori -which
branch will be covered. The unpredicability of a non-deterministic system
is a consequence of the fact that at any branching point the system decides
which is the way to follow. '

The behaviour of an interactive system may also be modelled with a
tree, in which any node is a state and any arc is a transition between two
states. In this representation, that we can call ‘interaction tree’, we can
neither represent concurrency aspects (as it happens by employing STN)
nor cycles, but this choice is necessary in order to do a comparison between
an interactive system and a non-deterministic machine.

In interactive systems, at any state the user can perform an action among
those belonging to the set of allowable actions for that state. The choice of
the action depends on the user’s needs, skill, aim, etc. In the ‘interaction
tree’ we can have more than one arc leaving from the same node, any of
them representing an allowable action, but each arc has a different label,
because the computation is deterministic. ‘

Borrowing “non-determinism” from the theory of computation, we ¢an
say that we have non-determinism in HCI because at any node we can have
more than one arc leaving and it is not possible to foresee which branch in
the tree the interaction will follow, i.e. it is not possible to fully foresee the
system behaviour,

Since humans play a role in HCI and they are unpredictable, the result-
ing interaction is non-deterministic. and, since humans are present within
HCI having a double role as tliat of any partner in a communication (i.e.
as a sender when they “say” something, as a receiver when they “obtain”

4.1. UNPREDICTABILITY OF INTERACTION 33

something) we have a double non- determinism in interaction: one from the
computer point of view (when the user is a sender), the other from the user
point of view (when the user himself is a receiver).

We have non-determinism, or, as Wegner says, indeterminism [87], from
the computer’s point of view when the computer is not able to foresee the
user succeeding action. ,

Since interaction is driven by the user, the branch to follow in the ‘in-
teraction tree’ is not previously chosen, but it is created at any node by the
user depending on the feedback, his aim, knowledge, experience, ... Such
unpredictability may be reduced if there are good task and user models:
in this way, by knowing the task, the user’s aim and his knowledge on the
system, it is possible to do some prediction on the sequence of user actions,
and, consequently, on the computer behaviour. Nevertheless, a user could
perform some action not necessarily logically linked with the step foreseen
by a task model; sometimes prediction may be right, sometimes not, always
because human behaviour does not follow a mathematical law.

From the user’s point of view, a definition of non-determinism is slightly
more complex. We have non-determinism when a user does not know the
system behaviour, so he cannot performn a prediction. In this case the user
can gain information on the system behaviour by navigating through the
system itself. The choices of which action to perform are generally based on
previous knowledge about other systems.

Moreover, there is also non-determinism when a user thinks he knows how
the system will behave after his input, but the computer response is different
from the expected one. In this case, there are inconsistencies between the
user’s and system’s point of view: the system may appear non-deterministic
simply because the user himself has not enough information on the system
state and on how it really behaves under the surface of the application soft-
ware. In both cases, undo functions play a basic role in interaction, in order
to allow the user to handle and reduce non-determinism.

Finally, another example of unpredictability in interaction is represented
by the fact that in HCI the world is not closed, in the sense that it does not
involve only the computer and the user, but, as said in Chapter 2, the system
is composed by the computer and all the entities, internal and external to it,
which are able to give, and/or react to, external stimuli. This means that we
also have to consider printers, elements on the net, ... For this reason, even
if the user is following the task model step-by-step, something external to
the application (but internal to the system) may happen (as a system crash,
problems with printers, net, ...), disallowing prediction.

54 CHAPTER 4. DEALING WITH UNDO

4.2 Non-determinism from the user’s point of view

In the previous Section, it has been said that the knowledge on an object
represents for the human a kind of control, of his power on the object itself.
While interacting with a computer any user would like to feel in control of
his dialogue. In order to do this, Cole, Lansdal and Christie [21] suggested
that any user should be able to answer the following questions:

1. Where am I? It is important for the user to have information on the
state that he has reached. This information is provided by the feed-
back. ’

2. How did I get here? Changes on the interface after the execution of a
particular action allow the user to establish a causality link between
that action and the happened changes. This information is also pro-
vided by the feedback.

3. What can I do? The understanding of the current system state allows
the user to know the range of actions that it is possible to perform in
that state. This is a direct consequence of the answer to the question
Where am T?

4. Where can I go next? If the user has an aim to pursue but he cannot
perform a needed action in the current state, then he needs to change
state by reaching a suitable one (reachability). In order to do this,
the user has to be able to navigate through the system. This ability
is given partially by the feedback and partially by the possibility to
perform predictions, basing the last on his previous experience and
knowledge about siniilar systems.

Analysing the answers of the four above questions, we may note that
the answer to the first one presupposes a knowledge, at least partial, of
“the system state; the answer to the fourth question implies a knowledge of
the system behaviour, while the answers to the second and third questions
require a knowledge of both system state and behaviour. This means that,
in order to really feel in control of his dialogue, the user basically needs to
know the system state and the system behaviour after any one of his action.

From the user’s point of view, the system state is what he can see on the
interface of the system with which he is interacting. Actually, the system
state also has internal components and the user cannot have all the infor-
mation on them. However, using some interactive functions, such as Print

4.3. MEANING OF UNDO IN INTERACTIVE SYSTEMS 55

Preview, Show §, Word Count, Show Clipboard, etc., he can find some pecu-
liarities about the system internal structure and state. Also the knowledge
on which actions a user can perform at each state is part of the system state.

The user knows the system behaviour if he knows how the system exe-
cutes an action, that is its semantics, and which state can be reached after its
execution. However, since the visual approach allows the user to have a fruit-
ful interaction without any particular knowledge on the system behaviour
under the surface, then we can say that a user has a good knowledge on
the system behaviour if he knows simply which state can be reached by per-
forming an action, without having a deep knowledge on the semantics of the
action itself.

If a user knows which state he has reached, the actions that he can
perform and which state he can reach, by perfoming the chosen action, then
the system would be totally deterministic, the user could do predictions and
feel totally in control of his dialogue. But, since there is not a full knowledge
of the system state and of the semantics of the actions, it may happen
that some inconsistencies arise between the user prediction and the system
behaviour. Some of such inconsistencies may be resolved by employing undo
functions, so allowing the user to be more in control of his dialogue.

Moreover, if there is not a full knowledge on the system behaviour and the
user is simply navigathing through it, without any specific aim to pursue,
then undo functions may be used as navigational tools in order to have
information on the system potentialities. Also in this case, by employing
undo functions, the user can feel more in control of his dialogue. In the
following, in order to differentiate the implicit undo form the explicit one,
we will indicate the first as implicit undo, and the last with Undo. For
uniformity, we will use words in italics starting with a capital letter for any
interactive system functions.

4.3 Meaning of undo in interactive systems

In order to express the importance of undo (not only as a recovery function)
in interactive systems, a comparison between it and a labyrinth may be
useful. In fact a labyrinth is particularly suitable to highlight the exploratory
aspects, which differentiate interactive systems with respect to traditional
ones. If we imagine an interactive system as a labyrinth, we find ourselves,
while walking through it (that is, while interacting), in one of the following
situations:

56 : CHAPTER 4. DEALING WITH UNDO

a the user’ aim is to reach the centre of the labyrinth; he knows the right
way but he makes a wrong tour (slip);

b the user’s aim is to reach the centre of the labyrinth; he thinks he knows
the right way but he is not able to reach it (mismatch between user
and system model);

¢ the user stopped at a crossing and wants to try a new path. In order
avoid walking back (in this case to go back is not intentionally but
only a consequence of a wrong choice) he needs to know his previous
direction;

d the user has no precise aim, he is simply walking around the labyrinth;

e ‘the user’s aim is to reach the centre of the labyrinth, but he does not know
where it is. This means that he has to explore the labyrinth in order
to reach his aim.

The points a and b depict that undo functions may be used as recovery
functions when the user realises that he has reached a wrong state. The
point ¢ depicts that the explicit undo may be employed in order to have
more information about the system state. Finally, points d and e depict
that undo functions may be used as a navigational tool.

In each of the above méntioned cases, both implicit and explicit undo
play a very important role. Actually, not only Undo allows the user to
repair an ertor, if it occurs, by reaching a past state (this is the aim of
any recovery function), but it allows the user also to handle and reduce
non-determinism. In fact, when a user is navigating through a system, ex-
ploiting the exploratory aspect, typical of interactive systems, he is enriching
his knowledge about the system’s behaviour. In this case he handles non-
determinism. However, his knowledge is related to the external system be-
haviour; not on the internal system structure or status. Instead, if thereis a
mismatch between the user’s and system’s model, then an inexact matching
between the interpretation of the user’s action from the system’s point of
view and from the user’s point of view occurs: this means that the semantics
of the left hand side and right hand side, with respect to the interface I of
Figure 2.3, differ. In this case Undo may provide more information on the
internal system structure, so reducing non-determinismi.

The main consequence of the above mentioned undo characteristics is
that Undo allows the user to increase his control during his diclogue.

4.3. MEANING OF UNDO IN INTERACTIVE SYSTEMS 57

4.3.1 Undo as a recovery function

After the interpretation of the feedback, the user can realise if the reached
state is wrong or not. The reached state may be wrong in two cases:

1. the user Anows what he wants/needs in order to reach a given state
and how to reach it (point a in the labyrinth), but he, unwittingly,
performs a wrong choice.

2. the user thinks he knows what he wants/needs to reach and how to
do it (point b in the labyrinth), but the reached state differs from the
expected one.

In the first case, the user recognises, immediately after the feedback, that
the reached state is wrong and, by employing Undo, he can cancel the effect
of the last performed action(s), so reaching a previous state. In this case,
he made what Norman defines as a slip [64]. The slip is an acidental error:
for example, when a user writes a wrong character while typing, because
his finger is on the wrong key, or when a user clicks on a wrong buttons or
icons because accidentally the mouse is not in the right position, then he is
making a slip. This situation is easy to recover.

In the second case, the user is performing a mistake, i.e. a semantic
error. This means that there is a different semantics of the same action from
the user’s and system’s point of view. The consequence is that there is a
mismatch between the user and system model. In this case the Undo can
provide some information about the internal system structure, so allowing
the user to reduce non-determinism.

4.3.2 TUndo to have more information on the actual state

While interacting, if the effect of any user action modifies in some way the
interface (in the broad sense, considering any kind of feedback, visual, audio,
...}, then the user is able to do a link cause-effect. But if there is a breakdown
in the interaction, for example if a user stops temporarily his work to have
a cup of coffee, then when he comes back, he could not remember how he
reached the current state. IFor example, imagine a user is working with a
word processor and in the buffer there is a portion of text that we can call
A. Then the user selects the portion of text B. His aim is to do a Cut and
Paste in order to move B from its position to the beginning of the document.
Instead he performs a Delete on the selected text and then goes away for a
cup of coffee. When he comes back, he puts the pointer at the beginning

58 CHAPTER 4. DEALING WITH UNDO

of the text and performs Paste. Result: B is lost (unless selective undo
mechanisms are available) and A is pasted. This usually happens when a
user does not have or does not use information on how a state has been
reached. For a breakdown in interaction, a system function which deletes
the effect of the last performed action may help in knowing how the current
state has been reached (point ¢). Of course, if the user wants to continue
his interaction from the actual state before he used Undo, he has to redo the
cancelled action.

4.3.3 Undo as a navigational tool

The points d and e suggest that a navigation through a system may be done
without any aim (d) or trying to obtain an aim without any knowledge on
how to do it (e).

" The point d suggests that an interactive system may be employed by
the user simply navigating through it, without any aim. In this way, the
feedback following any action in the navigation, allows the user to have more
information on the reachable states while interacting. Such information is
not about internal states and/or about how the system is functioning under
the surface (i.e. information about the actions semantics), but on what is
possible to do and what is possible to obtain with the system. This mieans
that the information acquired from the user is broad, but not deep. Since,
in this way, detailed knowledge about system state and semantics is not
increased, the user is not reducing non-determinism, but he is handling non-
determinism to obhtain a general idea on the system potentialities.

When a user has an aim to pursue, i.e. a desired state to reach, but
does not know how, then, exploiting the exploratory aspects of interactive
systems, he can perform an action among all the allowable ones in the actual
state. If the reached state is still wrong or inadequate to the user, then he can
perform {ndo cancelling the last performed action and can try another path
in the ‘interaction tree’. Reasoning in terms of the reachability properties,
this means that the user is trying to find a suitable action that, provided as
input to the computer, allows him to reach his aim. The situation in this
case is very similar to the previous one (d), the difference is in the kind and
the way of choice of the allowable action that has to be performed, because
this time such a choice is influenced by the user’s aim.

4.4. UNDO REDUCES NON-DETERMINISM . . . 59

4.4 Undo reduces non-determinism . . .

In order to understand the system’s behaviour, any user needs to know how
and on which object any function acts. The word how is related to the action
semantics, but we cannot talk about the semantics of each interactive func-
tions. In next Chapters we will focus only on the Undo semantics, because
this function characterises interactive systems with respect to traditional
ones.

The words on which object indicate the domain of interest of any ac-
tion. By applying the visual approach, the user generally does not need to
know how the system behaves under the surface of the application software.
Unfortunately, all goes well until the user reaches a state that is different
from what he forsaw, i.e., until there is a mismatch between the user’s and
system’s model. Such a mismatch may be due to the choice of an unsuitable
metaphor to represent visual objects on the interface [57], or to a wrong
evaluation of the action semantics. Since, the visual approach implies that
the semantics of any system function should be very easy and immediate to
understand (see Chapter 2), then a wrong evaluation of the action semantics
may be due to a uncomplete knowledge of the object on which the action
is working. This mismatch cannot be always resolved by applying Undo,
because it only cancels the effect of the last performed action(s) and, if the
mistake is due to a remote action, then, depending on the implementation
of Undo (see Chapter 5), it is not always possible to cancel it. Some systems
support selective undo which allows the user to cancel individual past ac-
tions far back in the history. However, Undo can show some aspects of the
internal system structure, helping the user in understanding the domain of
interest of system functions. Undo, by encreasing the user’s knowledge of the
system’s behaviour, may helps the user himself in reducing non-determinism
in interaction.

4.4.1 Granularity levels

During any interaction between a user and a computer, it is important to
identify the objects which the user can handle, because such oljects represent
the data of interest, the data which an action can effect. Following the
hierarchy proposed in Figure 3.1, we have interaction with operating systems,
in which the objects of interest are files, and within application software, in
which the objects of interest are contents of files. But the word ‘content’ is
not enough to understand the object which an action effects. So, to better

60 CHAPTER 4. DEALING WITH UNDO

Figure 4.1: This figure is interpreted by the user as a cube, not as a square
and 5 segments.

understand the different objects within the application level, we are going
to introduce the granularity levels. 4

Within an application software, the levels of g1anu1a11ty are basmally
two, the lowest and highest, but for each specific application any numbe1 of
levels between them may be added.

At the lowest granularity level, the data of interest are the elementary
components present in the application.

At the highest level, the data of interest are the global content (for ex-
ample all the text of a document) of files, which are made by string(s) of
elementary components.

For example, if we are working with MacDraw II; the elementary compo-
nents are the geometrical objects which may be chosen in the palette, while
the file is made by strings composed by the drawn geometrical objects. In
this case the string is not linear, but bidimensional, and, for this reason, it
may be seen as a spatial composition of elementary components instead of
their linear sequence. In MacDraw II there is also an intermediate level of
granularity. Since for the user the spatial composition of some elementary
components may have a particular meaning, the system provides a function
(Group) in such a way that the user himself is able to indicate to the sys-
tem that the selected components have to be considered as a unique object.
Figure 4.1 shows that the drawn picture is considered as a cube by the user,
and as a square and five segments by the system. The Group function allows
both the user and the system to consider the same string with the same
granularity.

Some applications may also have an own (or more than one) intermedi-

4.4. UNDO REDUCES NON-DETERMINISM . . . 61

ate level, besides that one which may be created by the user. For example,
working with a word processor, the data of interest at the lowest level are
the characters which can be typed by using the keyboard, while at the higher
level the data of interest are the content of files, which are made by combina-
tions of characters. The user may create an intermediate level by selecting
characters (which, from his point of view, are a portion of a word, or a
whole word or a group of words belonging to his text, that is of the written
language he is using), in order to inform the system which is the object of
the next action. This intermediate level is not persistent and its length in
time depends on the successive user action. Besides this intermediate level,
there is also another one, this time provided by the system and the user
is not explicitly informed about this. While a user is typing, the system
considers as a single object the portion of text typed between two successive
events. An event is an action, whose name is present in the menu, and may
be entered by mouse or keyboard. However, also the time may be an event
defining the end of an object. For example, in Microsoft WordTM5.1 | if
we make a pause of at least 20 sec. while typing, this time is considered
an event which defines the end of the object. The next typed character will
belong to a new object. Generally the user does not know the structure of
the intermediate granularity level, but, since he is using a language (interac-
tion language, and the user does not realise that it is a language) to perform
his task (which in this case is based on the grammar of a spoken language)
intuitively he associates a meaning to a string of characters, so creating a
word of his spoken language. In this way, the granularity conceived by the
user is different from the one used by the system. If the user perfoms the
Undo after typing, its effect is to delete the last written object from the
system’s point of view, which, as before mentioned, not always corresponds
to the definition of object from the user’s point of view.

When a user is in a constructing phase during his interaction, that is he
is adding elements to his file (for example, he is typing text or drawing pic-
tures), an eventually differences in the granularity between user and system
does not effect the following constructive action. But if the user is modifying
the file, moving or cancelling some of its content, then inconsistencies due
to the different granularity levels may arise. In particular, such inconsisten-
cies are highlighted by the Undo which, showing the granularity of the last
performed action, increases the user’s knowledge about the internal system
structure, so reducing non-determinismn.

62 CHAPTER 4. DEALING WITH UNDO

4.5 ... but Undo adds non-determinism too!

Often, Undo is a very powerful tool, allowing the user to repair an error, but
sometimes it may add confusion in the user while interacting. How many
times have we tried to perform Undo and, although present on the interface,
such function was not allowable? Or how many times have we performed
Undo obtaining something different from what we expected? Such confusion
is due to the fact that Undo is not as ease as it looks; in fact, it is a very
complex function and we cannot simply say that it cancels the effect of the
last performed action(s). The last action with respect to what? Last from
the user’s point of view, that is the last action in the interaction (the last
user performed action), ot from the computer’s point of view, that is the last
action in the computation, the last action which modified the result? For
example, if, working with a word processor a user types a word, then uses
the scrollbar and then applies Undo, which action will be cancelled? The
typing, the scroll or both? The uncomplete knowledge about what and how
Undo acts, makes its behaviour unpredictable, so adding non-determinism
in interaction. In the next Section we will explain what Undo acts on, while
we will dedicate Chapters 5, 6 and 7 to describe how Undo acts.

4.5.1 Different kinds of actions

Undo is a special kind of system function, since its domain of interest is not
an object but a command, and its application cancels the effect of the last
applied command(s). As said in Chapter 3, explicit undo is available only
at the application level, so Save, Exit, ..., (even if such functions are within
an application software, their objects of interest are files, not their contents)
and all the other functions at the file level are not undoable in the sense of
the explicit undo. However, not even all the functions within the application
level may be undone.

Until now, we have talked in general about actions, and such actions
could be ordinary commands or Undo. Since, as said at the beginning of
this Section, Undo acts on commands, and not all the commands may be
undone, we would like to clarily which commands are undoable and which are
not. In order to do this, we have to talk about different command instances
and levels.

A command instance may be active, passive or neutral depending on the
effect that such a command has on the Result and Display in the sense of
the red-PIE (see Chapter 1).

4.5. ... BUT UNDO ADDS NON-DETERMINISM TOO! 63

If a command instance modifies both Result and Display, then such in-
stance is said active; if it modifies only the Display but not the Result,
then such instance is said passive; finally, if it modifies neither Display nor
Result, then such instance is said neutral. More formally, given the red-
PIE P = < P,I, E,result,display >, assuming that the system, starting
from the state s,, by executing the command ¢, reaches the state s, that is
doit(ss, ¢) = s., we have the following definitions:

Definition 4.1 A command instance c is said active if:
1. Sq & Se;
2. result(proj(s,)) # result(proj(s.)):
3. display(proj(s.)) # display(proj(sc)).

Definition 4.2 A command instance ¢ is said passive if:
1. Sq % Se;
2. result(proj(s,)) = 7‘e.9uli‘(.proj(sc)),'
3. display(proj(ss)) # display(proj(s.)).

Definition 4.3 A command instance ¢ is said neutral if
1. 84 = S¢;
2. result(proj(s.)) = result(proj(s:));
3. display(proj(s.)) = display{proj(s.)).

The same command, applied in different state, may have different in-
stances. For example, suppose that a user, while working with a word pro-
cessor, selects a word, performs a Cut and then performs a Paste. In this
case Paste has an active instance, since such command modifies both Dis-
play and Result. If the user selects the just pasted word and performs again
a Paste, then its instance is neutral. since neither Result nor Display have
been changed.

At this point we can define a command as active [76], passive [39, 26] or -
neutral as following:

Definition 4.4 A command ¢ € (' is active if there exists at least one
occurrence in which ¢ has an active instance.

64 CHAPTER 4. DEALING WITH UNDOQ

Definition 4.5 A command ¢ € C is passive if there exists at least one
occurrence in which ¢ has a passive instance; ¢ may have a neutral instance,
but never an active one.

Definition 4.6 A command ¢ € C is neutral if there exists at least one
occurrence in which ¢ has a neutral instance; never ¢ can have an active or
passive instance.

Working in Microsoft WordT™5.1, example of active commands are
Cut, Paste, Replace, Clear, etc.; example of passive commands are the scroll-
bar, the cursor movement, Qutline, Page Layout, etc.; examples of neutral
command are Word Count, etc.

In the most common application software, Undo acts only at the level of
the active commands. If an active comman is followed by passive or neutral
commands, they are simply skipped. For example, in Microsoft WordTM5.1,
if a user, types a word, then, with the scrollbar, changes the display and
then performs Undo, the effect of the Undo is to skip the scrollbar and to
recover the situation in which the text was before the user typed the can-
celled word. It is logical to understand why Undo does not act on neutral
commands, because the effect of such commands is not to modify result or
display but to provide information to the user. In some way, it is logical
also to understand why Undo does not act on passive commarnds; because
cursor movements, scrollbar, etc. are easy to undone with implicit undo.
Nevertheless, the passive commands are not always skipped. Consider, for
example, in AMicrosoft WordT5.1 the functions which allow the user to
change the view of the document (as Outline, Page Layout). Since such
functions modify the display but not the result, they are passive. In any
of these imodes, the user can edit, scroll and undo active actions, as in the
normal mode. While the user is working within one of these modes, Undo op-
erates uniformly and consistently. However, when swhitching between them
the situation is different. If a user, while working in the normal mode, enters
an active command, and then changes the view of the document applying
QOutline, he cannot perform Undo because the last passive command is not
skipped. Conversely, if the user changes view with the Page Layout, then,
performing Undo, the last passive command is skipped and the last active
one is undone. The situation is the same also when moving from the Page
Layout or Outline mode to the Normal one. Moving from the Page Layout
to the Normal, the last active dction done in Page Layout may be undone,
since the change of the view is seen as a passive action. Moving from the

4.6. UNDO AND RISKY INTERACTION 65

Outline to the Normal, the last active action done in Normal cannot be
undone. Such problems have been resolved in Microsoft WordT™6.0.

There are special kinds of active commands as Replace, Character, etc.,
which allows the user to do more than one modification at the same time.
Tor the execution of such commands, the user is helped by a dialogue box
and performing Undo all the modification are undone at the same time. For
example, when a user closes the Replace dialogue box, after having applied it,
and performs Undo, then all the modification done with the Replace All are
undone at the same time, because the system clumps together the sequences
of active actions requested within the dialogue box and treats them as one.
The user cannot perform an explicit undo, but only an implicit one, while
he is in a dialogue box. The opening of a dialogue box under the menu item
Edit is a passive command and while it is opened, the user can perform the
Undo of the last active entered command in the text. Conversely, when any
dialogue box is opened from the menu item Format, then it is not possible
to do any operation until the submenu is closed.

4.6 Undo and risky interaction

In the previous sections, the importance of undo functions (implicit and ex-
plicit) has been introduced in order td draw importance on how the user can
feel more in control of his dialogue. The implicit undo (as when moving an
icon from a window A to a window B and vice versa) relies on proportionate
effort: small actions give rise to small effects (remind that big actions, as to
remove a file, have neither implicit nor explicit undo). But what we expect
when interacting with a computer, is to be able to do much very quickly,
that is to obtain large effects from simall actions. Usually, such an increase
of power is at the application level, but it does not always implies a power
in interaction too! Really, by increasing the application power, also the risk
in interaction increases. Furthermore, an explicit undo may be extremely
useful to reduce such a risk [35]. But what is this risk? The first kind of risk
may be due to the presence of user’s errors (slips) while interacting, so the
Undo can help the user in recovering from errors. Moreover, the other risk
is due to the mismatch between the user’s and system’s point of view on the
same action.

Not always the presence of Undo assures a reliable interaction: in fact,
it often can make a system more risky. In the previous Section we gave
an example of risky Undo, when we said that in Microsoft WordTM5.1

66 CHAPTER 4. DEALING WITH UNDO

not all the passive actions are skipped when applying Undo. This means
that the behaviour of this system function may add non-determinism in
interaction when it is slightly inconsistent. But does it matter? For 99%
of the time Undo works; this is better than systems where Undo was either
absent or frequently did not work. Or is it? If Undo works almost all the
time, then users may become used to it. Indeed, one of the advantages of
having Undo is that users can take a more exploratory approach to their
interaction, trying out possible courses of action, but then retracing their
steps if negative results occur, i.e. their behaviour become more risky. But
if they become more risky then they are more likely to do things that need
Undo, and if U'ndo does not work uniformly then they will have problems
which would never have occurred if they had been more careful. So although
a 99% effective Undo may not be better than having no Undo at all, there will
be errors that occur when you have Undo which would not have happened
if you had never had {'ndo at all!

Chapter 5

Reflections on Undo and
Redo

In this chapter we are going to take into account characteristics of the
Undo/ Redo functions in interactive systems. We identify the domain of in-
terest of {/ndo as the command history. Actually, we could have two classes
of Undo function, one self-applicable and the other not self-applicable. In
the first case, Undo belongs to its domain of interest and Undo of Undo is it
is used as the Redo function. In the second case Undo does not belong to its
domain of interest and the Undo of Undo is used as a backtrack tool. Besides
this classification, some systems allow also to perform Undo not only on the
last performed action, but also on a block of n actions. The size of the block
of actions to be undone is decided by the user or by the system, depending
on the implementation. Two semi-formal definitions .of Undo and a taxon-
omy of interactive systems, based on the Undo granularity and repetition,
are next proposed. Moreover, we will also introduce the Redo function. Tts
application domain is not the Undo, but the undone actions. The Redo is not
exactly the inverse of Undo, there is, instead, an intrinsic causality depen-
dence with the Undo. Two semi-formal definitions of Redo and a taxonomy
of interactive systems, based on the Redo granularity, repetition and the link
with Undo, are proposed. Finally, a discussion on reflexivity aspects, reacha-
bility properties and commitment points, stresses the fact that by increasing
the power of the Undo/Redo mechanism the risk in interaction increases.

67

68 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

5.1 The world around Undo

The issue of Undo in user interfaces has been studied by several authors
over many years (e.g. [4, 45, 88, 84, 62]). This has included both work
aimed at understanding the problem, and work on implementation struc-
tures. Despite this, experiments have shown that experienced users of Mi-
crosoft Word,which has a relatively simple and easy to use Undo function,
still have great difficulty in working out what Undo will do in some contexts
[66]). Is this because we do not still have a clear idea of what Undo should
do, or is it simply that Undo is intrinsically complex?

This is not simply a matter of theoretical interest. At the time of the
earlier formulations of Undo, the users of most interactive systems were either
experts, or at least computer literate. Even if the users of a system with
complex Undo mechanisms, such as Emacs [83], did not fully understand
its semantics, at least they were not too intimidated by its often erratic
behaviour. Now, sophisticated multi-step Undo is available on standard
office systems such as Microsoft Word 6, and indeed the ability to undo with
ease (not necessarily with an Undo command) is seen as one of the positive
key features of the direct manipulation paradigm [81].

But what does {/ndo exactly achieve? Since most systems allow the user
to reach only the previous'state, one could think that the Undo is a system
function which allows the user to delete only the previous action. Some
systems do not allow to perform the Undo of the Undo , some others allow
it; in this last case, if it is possible to go back along the past history, the
Undo of the Undo may be used as a backtracking tool, otherwise the system
may oscillate between two states. Moreover, some systems allow not only to
reach the previous state, but also any one in the past history.

From the above considerations, we can argue that the world around the
Undo is very confused. Given the range of interpretations of Undo in different
applications, it is clear that there is not yet a common understanding or
definition. Its weak definition, including all the above mentioned examples,
consider the Undo as a system function which allows the user to reach any
state in the past history. This means that the Undo may be seen as a special
case of reachability [29]. In fact, if, in a system, the reachability property
holds, it is possible to reach, starting from any system state, any other
state, both the ones previously reached (present in the past actions history)
or others not yet reached (possible future actions). Therefore, reachability
allows the user to move in both directions of the action history, past and
future. The explicit [/ndo is a special case of reachability, in the sense that

5.2. THE SCRIPT MODEL 69

it allows the user to move only in one direction of the action history, the
past one.

Among all the functions which a user can perform while interacting with
a computer, Undo, as we will explain in the following sections, is one of
the most complex and its behaviour differs from any other system function.
Particularly, after an Undo is performed, the user may find inconsistent situ-
ation due to the different granularity of the handled data or to the different
kind of performed actions. This inconsistency arises because Undo shows
something of the internal functioning of the system, while the user does not
know anything about it: if the new information he receives is in contrast
with what he knows or thinks, he has problems of inconsistency.

5.2 The script model

Different formal models have been proposed in the literature in order to
describe Undo in interactive systems [4, 86, 84]. In [4] the authors propose
a ‘script’ model of Undo, which we will refer to as the ACS model. This
is based on three streams of actions: the user history, the active script and
the pending script. The user history is simply a list storing all the user’s
actions. Sequences of commands produce scripts; there is an immediate
mapping between each script and a state as the object visualised on the
screen. The active script is the list of the user’s entered commands. The
pending script is the list of the commands deleted in the active script by the
Undo.

If, for example, we are working with a text editor and we enter these
actions in the user history ’type(hi), type(everybody), Undo’, we will have
this sequence:

User History type(hi)
Active Script < type(hi) >
State hi

Pending Script <>

User History type(hi), type(everybody)

Active Script < type(hi),type(everybody) >

70 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

State hi everybody

Pending Script <>

User History type(hi), type(everybody), Undo
Active Script < type(hi) >
State hi

Pending Script < type(everybody) >

This example shows that in any interaction there are two kinds of history,
one storing any user action which the user can only increase by perform-
ing actions, the other storying the active script and the user modifcations,
adding or deleting commands. The role of the pending script is to keep trace
of the last undone action. If a Redo follows an Undo, then the action present
in the pending script is moved from its position and is added to the active
script, while the Redo function is added to the user history. The Redo case
is shown in the following example:

User History type(hi), type(everybody), Undo, Redo
Active Script < type(hi),type(everybody) >
State hi everybody

Pending Script <>

5.3 Is Undo part of the commands’ history?

The difficulties in dealing with Undo arise for its complex nature and struc-
ture. In order to understand how this function acts, it is better to note the
differences between it and the ordinary commands. Broadly speaking, we
can divide all the user’s actions in two classes: the first is made by all the
functions which are strictly related to the user’s task; the second is made by
function(s) which allow the user to modify the past interaction [88], that is
the Undo functions ({/ndo, Redo or browse).

Indicating with A4 the set of user’s actions, we have that A = (C' U U)*,
where C'is the set of allowable commands and U is the set of Undo functions,

5.3. IS UNDO PART OF THE COMMANDS’ HISTORY? 71

including all different kinds of Undo (backtrack, flip, etc.), Redo, and/or
browsing functions. In the case of a single Undo, without any Redo or
browsing, this simplifies to 4 = (C'U {Undo})*.

We will use H?® to denote the set of sequences (or histories) of actions
(H* = A*), and H for the set of commands histories (H = C*). That is, H®
corresponds to the ‘user history’ part of the ACS model, and H corresponds
to the commands in the ‘active script’ or, in other words, the commands
issued to the system as if there were no Undo. In the sequel, when we will
talk about the Undo of a command, we will intend Undo of an undoable
command.

The subdivision of the user actions into commands and Undo, is naturally
generated by the different user aim:

command The user’s aim is to modifyv an object.

Undo The user’s aim is to delete a modification, the effect of a command
on an object. In other words to modify the interaction itself.

Starting from the above distinction, it is possible to provide a functional
description of both an ordinary command and the Undo.

An ordinary command ¢ € C is a function that modifies an obJect of
interest, that is, an object directly related to the task the user is performing.
Such objects are those that are in the state of the system, even if we ignore
Undo; that is S. The primary purpose of commands is to act on S. This
can be modelled using the doit function (see Chapter 1). We have that
dott(s,c) = ¢, that is, performing the command ¢ we can switch from state
sto s’. Now, ¢ is a new state, typically distinct from all the previous states,
and both s and s’ belong to the set of states S. In the ACS model, doit
corresponds to the result of the natural mapping between the active script
ant the actual situation of the document, ignoring the history. Note that
this doit function only tells us about the effect of ordinary commands on the
state of the system without Undo. They will also have some effect on the
rest of §% determining the complete behaviour of the system.

Turning now to the Undo, the object of interest of Undo depends on
which definition we consider. However, its data of interest are not the same
objects on which the commands act. Instead, such data may be commands
or actions, that is, if we consider Undo without Redo, the application domain
may be the command history (H) or the action history.(H?®).

In the first case, Undo is definded by a function U : H — H acting on
previous commands to reverse their effect. In this case, the effect of Undo

72 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

itself cannot be reversed, since it does not belong to its domain definition.
Effectively, all past undos are forgotten, except for their effect in having
reversed previous actions. Such a system cannot have Redo function; Undo
is not self applicable and Undo of Undo acts as a pure backtracking tool.

Alternatively, the domain of interest of Undo may be the complete action
history (from H?®). In this case, Undo can be definded by a function like
U:H®— H®. That is, the system regards U/ndo as a commaiid. However,
it is not natural and, in fact, there must be a different system behaviour
when performing Undo after a command or after a previous Undo. This is
exactly what we see in all systems with Undo. When the previous action has
been a command, then we expect Undo to act upon it by reversing its effect.
In this case, we have doit®(s, Undo) = s', where &' is not exactly a previous
state, but in some sense an equivalent one, because the system keeps track
of the Undo activity (for example using a boolean variable or the pending
script).

When performing Undo of Undo , different systems may have different
behaviour: some of them simply do not allow it, others consider Undo of
Undo as the Redo function. We will consider Redo later, but the former
case, of simple single step Undo, can be informally described as:

Ulh ~a) = { h ifae C
not allowed otherwise
The peculiarity of [/ndo, is that it is not a command but a meta-command,
and, being so, its structure is quite different from the one of the ordinary
commands. When using Undo as a command, it is self-applicable (Undo
of Undo as Redo) and some aspects of this reflexive structure are revealed
to the user, giving rise to problems of inconsistency (as said in chapter 4)
and even apparent randomness, especially if the user is expecting a different
kind of Undo behaviour. Moreover, since the domain of interest of Undo
is an action or command history, when using Undo, the user is not simply
interacting, but instead he is interacting with interaction.

5.4 Single-action and multiple-action

In the previous Section we began to classify different kinds of Undo based on
whether Undo is self-applicable or not. We have not explicitely considered
the Redo function. Morcover, we have also been intentionally vague as to the
scope of Undo, which varies markedly between specific Undo systems. This

5.4. SINGLE-ACTION AND MULTIPLE-ACTION 73

Granularity . . ' ‘
Repetition Single action Multiple actior
(111)
: ‘ Undo only of the Undo of a block
Single undo last command. of actions.
Undo of undois not Undo of undo is
allowed _ not allowed
il : v
(“) Undo only the () Undo a block of
Multiple undc last command. actions.
Undo of undo as Undo of undo as
backtracking backtracking

Figure 5.1: A taxonomy of Undo function. The rows represent the granu-
larity, the columns represent the repetition of Undo.

scope has two main aspects. Firstly, the number of times that Undo can be
applied: single-undo or multiple-undo. where by single-undo we mean the
ability to apply Undo only once, while by multiple-undo we mean the ability
to apply Undo successively. Secondly, the number of actions that may be
undone at one step: many systems allow only a single action to be undone at
a time, but other systems allow multiple actions to be undone at each Undo
step. The latter is a classification based on Undo granularity, that is, how
many actions may be undone at any step: one or many. In the case of the
multiple-action Undo, the user "decides’ how many actions to undo at one
step. In other words, at a low level the system determines the granularity
of undoable actions, whereas the user determines the granularity in terms
of the number of such actions to be undone. Unfortunately, because of the
way Undo *digs’ beneath the surface of the system implementation, several
different sorts of granularity are important and we have to ignore some in
order to understand others.

Figure 5.1 summarises a classification based on the above two distinc-
tions: single/multiple Undo and single/multiple actions. In it we identify
four classes of systems: :

74 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

(1) single-undo/single-action, where it is possible to apply Undo only on the
last performed action and the Undo of Undo is not allowed;

(ii) multiple-undo/single-action, where it is possible to apply Undo on the
last entered command and the Undo of Undo is used as a backtracking
tool;

(iii) single-undo/multiple-action, where it is possible to apply Undo only on
the last block of n actions and the Undo of Undo is not allowed;

(iv) multiple-undo/multiple-action, where it is possible to apply Undo on a
block of n commands and the Undo of Undo is used as a backtracking
tool.

It is easy to find examples of systems in three of these classes: for in-
stance, the standard single-action Undo (i) is found in many spreadsheets,
graphic packages and word processors; (ii) describes the behaviour of the
Back command in HyperCard; and multiple-action/multiple-undo (iv) is
supported via a pull down menu in Word 6. However, systems of type
(iii), at the top right of the diagram, seem to be absent. Why is this s0?7 In
principle, it would be possible to produce such a system, but it would not
be convenient to do so. We will see why in a moment.

One factor that differs in these kinds of Undo is the amount of informa-
tion they have to store in order to be able to perform an Undo. In the case of
(i) single-undo/single-action, only the current state and previous state need
to be stored. Every active command commits the previous one, in the sense
that they cannot longer be undone. This is a backward commitment point,
as it limits the amount the system can go ‘backwards’ in time to previous
states. In contrast, (ii) and (iv), both of which allow multiple-undo, have
no backward commitment points; it is always possible to go as far back as
you like. Among other things, this means that systems of type (ii) and (iv)
must both store similar amounts of history information.

The presence of backward commitment points are bad news for the user,
as they limit the possibilities for recovery. However, they are good news for
the developer, as a commitment point limits the amount the system has to
store and hence the cost of the Undo. In the extreme, storing everything
can be very expensive (even when implemented carefully using ‘deltas’!),

'Delta’ is a term used in version control systems. Instead of storing every version of a
document individually, only some entire copies are kept (often the oldest or most current
version) and in addition information is stored to describe differences between versions of

5.4. SINGLE-ACTION AND MULTIPLE-ACTION 75

so many systems have slightly weaker forms of (ii} or (iv) where there is a
limit on the number of commands that can be undone (e.g. one hundred
commands in Word 6), or on the total resources used to store history infor-
mation (e.g. Emacs, which has a large byte count limit). However, we will
regard these as effectively falling into the relevant category, just as we regard
a spreadsheet as being able to handle arbitrarily large sheets even there is
some resource limitation.

Looking at the concept of backward commitment points, it is clear why
it is unusual to find systems of type (iii). Such a system would have no
backward commitment point so long as only ordinary commands were used.
Similarly, like (ii) or (iv), it would, in principle, have to remember the com-
plete history of the interaction. However, after a single n action Undo, it
would no longer be possible to go back beyond those n actions. That is,
the action of doing an Undo would establish a backward commitment point.
Such a system would have all the disadvantages of (ii) or {iv) in terms of
potential cost of mantaining history information, while making things worse
for the user by establishing backward commitment points, reducing the pos-
sibility of recovery. Not surprisingly tyvpe (iii) systems are rare!

The relationship between (ii) and (iv) is also rather interesting. To see
this, let’s consider two informal definitions of Undo:

Definition 5.1 Undo is a system function which allows the user to reach
the previous state.

Definition 5.2 Undo is a system function which allows the user to reach
any previous state.

Neither of the above definitions of Undo allows selective undo be con-
sidered exactly an Undo. In fact, after its application, the reached state
may be not the one previously reached. For example, if a user performs the
sequence of actions ‘a. b, ¢’. and realises that *b’ is wrong, then he can select
and delete it. But what he obtains is *a, ¢’", because the execution of ‘b’
may in some way have influenced the following action. And the sequence ‘a,
¢’ may not be a part of the previous history.

Conversely, Definition 5.1 clearly covers type (i) Undo (single-undo/single-
action) and type (iv) clearly falls under Definition 5.2. What about (ii)? On

the document - the deltas. Forward deltas enable a more up-to-date version to be recreated
from an older one, backward deltas allow older version to be recreated from newer ones.

76 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

the one hand, a single Undo always turns back to the previous state. How-
ever, because the user can apply Undo repeatedly it is possible to go back
to any previous state: one can always get the effect of a single n-step Undo
by doing n single-step undos. So, the difference could be seen as one of
task migration [32]; that is, the same objective can be reached either by the
user or the system. Furthermore, given that the mapping between physical
actions and logical actions is rather a matter of taste, one could even regard
the user pressing the Undo button n times as being equivalent to a single
logical n-step Undo action!

So, to some extent, (ii) and (iv) give the user equivalent power, but with
a different user interface. In fact, for n-step Undo the user interface issue
is particularly complex. When an action is performed one wants to have
some idea of what the action is going to do (predictability). Similarly, when
one performs an Undo, one would like some idea of what will happen. For
single-step Undo this can be difficult, as shown by the study of Wright et al.
[66]. However, for n-step Undo things are much more difficult. Even if one
has a very clear idea of the granularity of each command, can one remember
just how many commands back lies the state one is trying to return to? For
class (ii) one can simply go back until one notices that he/she is in the right
case, but for n-step Undo it is essential that the system gives some means to
determine how many steps to go back. For example, in Word 6 the previous
actions are presented in the Undo menu.

Having an n-step UUndo, whether supplied by the system (iv) or by multi-
ple commands (ii), makes it also possible to go back too far by accident. For
case (ii), one would probably notice and, at worst, Undo one step too many.
In case (iv) the potential damage is greater. For multiple undos, Redo is not
a luxury, but a necessity.

5.5 Adding Redo

The raison d’etre of Undo is the user’s need for a function that allows him to
reverse the effect of a command, recovering a past situation. This is needed
when the command has been performed as an error so that an undesirable
state has been reached. What happens if the user realises that Undo has
been performed in error and has itself resulted in an undesirable state? The
answer to this question has been the raison d’etre of the Redo function.

It is common to consider Redo as the inverse of Undo. Indeed, this may
be the semantics of Redo wher Undo is applied on a single action. But

5.5. ADDING REDO

~I
-1

the meaning of Redo is less clear in the case of multiple-undo. Is its effect
the reconstruction of the last undone action, or of all the deleted history?
And what about the effect of Redo when the last Undo has deleted a block
of actions? Does it recover the whole block or only the last action in the
block? Moreover, not only what Redo does is unclear, but there is also a
complex dependence between it and Undo. In the case of single-undo/single-
action, Undo is considered the inverse of the undone command and Redo the
inverse of Undo. But in any semigroup (the set of command is a semigroup
[29]) if the inverse exists, then the inverse of the inverse of an element is the
element itself. This means that the inverse of Undo (type(‘z’)) is type(‘z’).
But Redo is not identical to type('z’), it is just that when performed at a
particular point of the history, it has the same semantics. This has two

consequences. Firstly, we could consider Redo as a sort of super syntactic
sugar. In principle, the user could simply repeat the undone command; Redo
just makes this easier {possibly substantially easier). We could say that the
domain of interest of Redo is not so much Undo itself as the undone action(s).
Secondly, like Undo, we have to consider at what level we expect Redo to
reverse the effect of Undo. Certainly Redo is not ezactly the inverse of Undo!

After saying what Redo is not, we need to progress towards some defi-
nition of what it s, or at least, as we did with Undo, explore the range of
options.

When considering Undo, four major issues arose: reflexivity, granularity
(single or multiple action), repetition (single or multiple Undo) and the idea
of commitment points. Each of these has parallels for Redo, and in addition
the properties of Redo are linked to those of Undo. Although Redo may
not be a simple inverse of Undo, it is intimately connected. We will see
such dependence when considering the granularity of Redo, and also that
there is an intrinsic dependence of causality that determines whether Redo
is meaningful.

5.5.1 Causality

Just as you cannot think of Undo without considering what has been done,
you cannot consider Redo without something having been undone. This gives
rise to the most basic property of Redo:

causal dependence: in order to perform a Redo, Undo must have been
performed.

78 CHAPTER 5. REFLECTIONS ON UNDQO AND REDO

This appears too obvious to bother stating, but serves to highlight the re-
flexive nature of Redo. With Undo, we had to consider whether the principal
domain of definition is the ordinary command history, or the action history
itself. With Redo, we move up a level: is it (i) simply the command history,
(ii) the history with Undo commands, or (iii) does it also know about its
own role in the interaction? The causality condition would imply at least
some knowledge at level (ii). So, its effect may be simply in terms of the
undone actions, but it must at least know that they have been undone.

5.5.2 Granulérity and repetition

Redo, like Undo, may be applied to single or multiple actions. However,
there is the additional issue of the extent tied to the granularity of the Undo
command. We refer to such a linkage as granularity dependence. In addition
to there being one or more candidate undone commands to Redo, these may
have arisen because of one or more actual Undo commands. This gives rise
to five kinds of potential Redo granularity:

(a) Redo of last undone action

(b) Redo of some number of undone actions

(¢) Redo of all the actions undone by the last Undo command

(d) Redo of all the actions undone by some number of Undo commands
(e) Redo of all undone actions (up to the last non-undo command)

Within this list, (¢) and (d) exhibit granularity dependence, whereas (a),
(b) and (e) only exhibit causal dependence (they Redo undone actions).

The last (e) corresponds to a sort of escape, which reverses the effect of an
entire sequence of undos. Similar escapes occur at the ordinary Undo level;
for example, many systems have a ‘revert’ menu option, which allows you to
restore a document to the last saved version. Such escapes are themselves
a sort of Undo operation and are often considered in the same context [88].
Given that the effect of Undo can be so confusing, such an escape from an
Undo dialogue may well be a good idea! ‘

We can look at each of the Undo categories on Figure 5.1 and see how
they interact with these kinds of Redo granularity. Recall that class (iii),
single-undo/multiple-action, was deemed an unreasonable alternative, so we
will only consider the other three cases.

5.5. ADDING REDO 79

(i) single-undo/single-action: In this case, there can only ever be one
" undone action and one (effective) Undo, so all five Redo categories
collapse into one.

(ii) multiple-undo/single-action: In this case undone commands and Undo
’ commands are in a one-to-one correspondence, so (a)=(c) and (b)=(d).
However, categories (b) and (d) look weird. If the system is going to
allow single Redo commands to have non-singular effects, why not allow

this for Undo?

(iv) multiple-undo/multiple-action: In this case, (a) is the weird option. If
you can Undo groups of actions. why only allow single Redo steps?
The same argument could be said to hold for (c¢) with respect to (d),
but perhaps, given the different semantic level, one could argue that
in some systems (c) may be more comprehensible than (d).

- As with Undo, we find that the 'gra,nula,rity of Redo interacts strongly
~ with the possibility of repeated Redos, but in addition it also interacts with
the classes of Undo. We can consider the remaining categories above and
see which make sense when we consider single and multiple Redo.

With case (i), multiple-redo is meaningless (only one thing to Redo!),
leaving us a single category of Redo. flip-undo, where the Undo and Redo
‘toggle between two states. As only one of Undo or Redo is possible at
any time, the same button or menu position is used for each, leading to
the apparent situation where [/ndo is self-applicable. However, as we saw
earlier, this ‘ Undo of Undo is Redo® situation is never quite uniform between
Undo and other commands.

- For both cases (ii) and (iv). the "escape’ Redo can only be invoked (as
a Redo) a single time (although. of course it might toggle, like flip-undo,
undoing the Redo!). Would one want such a Redo in these circumstances?
It might be argued on efficiency grounds: a system may store only backward
* deltas; that is, information sufficient to Undo commands, but not Redo them.
During-a cvcle.of undoing, the system needs only to store the last not-undone
state and the current state: the escape Redo would simply jump back to this
last not-undone state. However, although this is credible, the extra expense
. of two-way deltas over and above one-way deltas is not enormous and so it
is likely that a Redo of the ‘escape’ [orm would only be supplied in addition
to more incremental Redo.

In case (ii), we dismissed options (b) and "(d), leaving only Redo gran-
ularity (a/c) to consider. For reasons similar to those that ruled out Undo

80 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

of class (iii), we can also see that allowing only a single Redo of granularity
(a/c) would not be convenient. If we allow repeated Undos, we have to have
all the expense of machinery and memory to store lots of states, so why
not allow multiple invocations of Redo also? That is, we should only have
options (a/c) with multiple Redo, where each Redo reconstructs more and
more of the undone history of commands. "

Finally, in case (iv), we have a similar story. Options (b), (c) and (d)
only make sense for multiple Redo, where they perform a similar job recon-
structing the command history.

Figure 5.2 summarises this taxonomy. Note again the ‘diagonal’ emphasis
of the table: granularity and repetition correlate, both within the operations
of Undo and Redo, and between them. If you are going to go to all the trouble
of storing many history information vou might as well use it!

As we did for Undo. we can summarise this in two informal alternative
definitions: '

Definition 5.3 Redo is a system function which allows the user to recover
the past state removed by the previous Undo.

Definition 5.4 Redo is a system function that allows the user to recover a
past state removed by any previous Undo.

Definition 5.3 corresponds to flip-undo. As with Undo, there is a design
choice between achieving Definition 5.4 by the user doing series of redos
(cases ii.a/c and iv.c). or with a single large granularity Redo (cases iv.b and
iv.d). Finally, the difference between (iv.b) and (iv.d) is in the interpretation
of ‘a past state’ in Definition 5.4, whether it is ‘the past state removed by
any previous Undo’ or ‘any past state removed by any previous Undo’.

5.5.3 Reflexivity

As we saw in Section 5.5.1, there is an inevitable reflexivity in the nature
of Redo - it cannot exist without reference to the previous occurrence of
Undo. In the ACS model this is captured in the state of the ‘pending script’;
however, for some kinds of Redo (i.a) this is overkill, for others (iv.c/d) in-
sufficient. The active script and pending script contain only the ordinary
commands so representing a low level of reflexivity: looking at the interaction
with the underlying application. The more complex cases require the ‘pend-
ing script’ to record aspects of the complete action history + Undo/ Redo are
reflecting on their own behaviour.

5.5. ADDING REDO

" Redo
Undo

Single redo

81

Multiple redo

®

Single-undo

@=m)=@==W=(e)

Only one cogfiand to

Single—action Redo only of the last redo
undone action
(i1) (@) = (¢) @=(©
Multiple_undo Redo only of thg#st undo of a Re:o of the last performed
sequernce undo.

Single-action

(e

Redo as an 'escape’

Repeated redo is used to
reconstruct the history

(v)

Multiple-undo
Multiple-action

(blc/d)

Single redo of

last undo.

(e

Redo as an 'escape’

(blc/d)

Redo of a block of undone
command. The size may be
different from the last undo.
Repeated redo used to
reconstruct the history

Figure 5.2: A taxonomy of Redo function. The rows represent the granular-
ity; the columus represent the kind of Undo which may precede Redo.

82 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

For systems where the Undo can be described purely in terms of the
pending script, the Redo and Undo operations can be regarded as having a
domain of the form H x H, (active script X pending script). The flip- Undo
is a degenerate example, as the pending script never has more than one
command (only one level of Undo is allowed), and the causal dependence is
captured by the fact that the pending script is not empty only if there has
been a previous Undo. Based on this, it is possible to fully describe flip-undo
using three rules:

1. ordinary command - add it to the active script and empty the pending
script

2. Undo - if the pending script is empty remove the last command from
the active script and put it in the pending script

3. Redo — if the pending script is non empty remove the command from
the pending script and add it to the active script

Since the last two of these rules are disjoint a single button (or menu option)
can be used. Although this is a valid description of the behaviour, it is not
how any such system is actually implemented — one wouldn’t bother to store
the whole active script and then never use it! Indeed, even for the formal
specification, we will use just two copies of the state: current state and past
state — similar to the single-step Undo. With such a representation, both
Undo and Redo simply swap the two states — identical! The system does
not need to know whether it is doing an Undo or a Redo, the difference is in
the user’s interpretation of the effect. This is closer to the way it would be
implemented.

The most common and straightforward kind of multi-step Undo /Redo
can also be described using the basic ACS pending script. This is the policy
found in Microsoft Word 6 and in the history list of Netscape Navigator.
In these systems you can Undo any number of commands one by one, or
even [ndo several commands at once, using a menu. The behaviour can be
described in a similar manner fot the flip- undo:

1. ordinary command — add it to the active script and empty the pending
script

2. Undo n - remove the last n commands from the active script and add
them to the pending script

5.5. ADDING REDO 83

3. Redo n — remove the last n commands from the pending script and
add them to the active script

Notice that (as we saw with single-step and backtrack Undo) the description
is simpler (no conditions on the pending script) because it is more uniform,
even though it is far more costly to implement. Word 6 and Netscape use
different interface representation metaphors: in Word 6 the user has separate
Undo and Redo menus, which exactly correspond to the active and pending
scripts, whereas in Netscape there is a single ‘Go’ menu with a tick against
the currently displayed page. The Word 6 menus show commands (e.g.
‘typing’), whereas in Navigator the items in the menu are pages, which
correspond to states. The latter difference is a direct consequence of the
more identifiable nature of the web browser state (a WW1W page). Note
also that the Netscape interface suggests a model that, rather than having
two scripts, has just one script with a pointer H x Ptr. This is equivalent
to the H x H representation, but is in some ways more flexible (as we will
see below).

Not all Undo systems can be described using a simple pending script.
Systems of type (iv.c/d) need to have some record of how many commands
were undone by a previous Undo in order to Redo them. The raw pending
script merely records the list of undone commands, such systems need a
pending script that itself contains {ndo commands! In fact, it is easier
to think in terms of a pointer into the complete action history: that is,
Undo /Redo acting on a domain of the form H® x Ptr. All commands add
something to the end of the history. Ordinary commands add themselves
and set the pointer to the end. The Undo /Redo command takes the action
currently pointed to, adds the inverse of the action to the end of the list
and moves the pointer back one. Whether the Undo /Redo command is
regarded as Undo or Redo is dependent on what sort of command is pointed
to, and depending on how the inversions of commands are represented, the
difference may be one of interpretation, rather than of different behaviour
within the application. This sort of strong reflexivity sounds quite complex,
and indeed in GNU emacs, where it is used, no amount of experimentation
seems to be able to uncover the rule! However, exactly the same rule is used
in HyperCard’s Back menu function (one of its two forms of history), and
it seems less confusing there. This form of Undo is rather like having your
actions recorded by a video, which you can rewind to find previous states
that you want to restore. However, the video keeps recording even when you
are rewinding. Rewinding ordinary recording is Undo, and rewinding past a

84 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

previous rewinding is Redo! Possibly a real-time or video-player metaphor
would make such an Undo /Redo policy more comprehensible.

5.5.4 Commitment points

In the taxonomy proposed in Figure 5.1, we said that for systems of class (i)
(single-action Undo), each active command commits the previous one, so
it cannot longer be undone. Instead, systems of class (ii) (backtrack/single-
action) and of class (iv) (backtrack/multiple-action) have no backward com-
mitment points.

For systems of class (i) adding of Redo does not modify the commitment
point, which is still introduced by the first active command after the Undo
/ Redo.

Conversely, for systems of class (ii) and (iv) the situation is a little dif-
ferent. In fact, adding Redo creates an ‘undo phase’. Actually, the user can
type a sequence of active, passive or neutral actions, i.e. the ordinary edit-
ing phase, and can then start the undo phase. The last may be composed
by a sequence of single-action Undo /Redo (systems of class (ii)), or by a
sequence of multiple-action Undo /Redo (systems of class (iv)). Any Undo
/ Redo may be followed and/or preceeded by a sequence (eventualy empty) of
passive/neutral actions. At this point, any entered active command breaks
the undo phase and creates a branch in the commands history. From a past
state there are now two ‘next’ states, the one previously reached, and the
one resulting from the new command. Some systems directly support such
a branched history [12]. However, the complexity of representing this at
the user interface (as well as the cost of implementing it) is high. Rather
than attempting to represent a branching history in the user interface, some
systems, as Word 6 and Netscape, adopt the same approach of the systems
of class (i): they commit the undo phase after any active command. That
is, the pending script is chopped off and Redo is no longer possible. This
means we can regard the dialogue as a number of phases: ordinary phasges
consisting of a mixture of active, passive and neutral commands and undo
phases consisting of a mixture of passive, neutral, Undo and Redo commands
(Figure 5.3). The transition between these phases is implicit, triggered by
the first U/ndo or active action.

From the above consideration, the undo phase may be seen as a subdia-
logue during the human-computer interaction. Out of this subdialogue, such
[ndo phase is seen as a an Undo of a block of actions without Redo. In fact,
let us suppose that we have entered this sequence of actions:

5.6. FINAL ANALYSIS 85

Undd
active/ Redol
passive/ passive/
neutral neutral
actions actions

active actions

Figure 5.3: Editing and Undo phases represented as a state transition net-
work.

€1, €2, €3, €4, ¢35, U(3), R(2),U(1),¢6
where U(i) indicates that we have performed an Undo of the last i commands;
similarly for the Redo.

Considering that Undo removes actions from the history and Redo add
some of the undone ones, we can clump together U(3), R(2),U(1) in U(2).
In this way, out of the undo phase, the sequence

c1, €2, €3, ¢4, ¢5, U(3), R(2), U (L), cg,

above mentioned, is seen as

€1, €2, C3, C4, C5, U (2), cg, which is equivalent to ¢y, ¢9, ¢3, cs.

5.6 Final analysis

Granularity dependence or independence between Undo /Redo involves dif-
ferent systems’ behaviours in human-computer interaction. In fact, when
performing Redo, if the previous Undo has been single (in this case, for gran-
ularity dependence also Redo is single), then it is the system which decides
which state has to be reached. On the contrary, if there is no granularity
dependence, it is the user that chooses which state he is interested in reach-
ing. The fact that the user can choose how to modify the history brings,
as a consequence, a different representation on the screen of the interactive
recovery functionality: we have no more buttons or icons, but lists. In fact,
it is difficult to represent visually something extremely linear as history.
An example of linearity of history is represented by VisEd [55], a visual
editor used to formulate a query to a database of images. In it, a query is
given by a sketch of the image the user is interested for retrieval. In this
application there are two levels of interaction: 1) while interacting with the

86 CHAPTER 5. REFLECTIONS ON UNDO AND REDO

visual editor, and 2) while interacting with the database. In the first case,
the interface supports an explicit Undo whose semantics is based on the
flip Undo. In the se¢ond case, an Undo mechanism is provided by a browser
which allows the user to reach (and eventually modify, applying the principles
of progressive querying) any query formulated during his interaction. The
query history is linear: it is handled as a list and the browser moves as a
pointer in the list. The visual approach is used for the interaction, while the
history is linearly represented, query by query.

There are also some interactive systems which have a visual represen-
tation of the history. An example is provided by Hypercube [20], that is a
visual query system which support the progressive querying technique. The
history is composed by different layers, anyone representing a formulated
query which, when overlapped, creates a cube; it allows to move queries,
and, eventually, to modify them, dragging a layer from backward to for-
ward. However, the hypercube technique cannot be applied to a text editor,
for the high number of states which may belong to the history of a document.

As we said in the previous Chapter, what we expect when interacting
with a computer, is to obtain a large effect from small actions. For this
reason a very powerful {/ndo, as for systems of class (iv), is extremely useful.
But we not reduce the risk in interaction by increasing the power of Undo!
In fact, as it happens in Netscape and Word 6.0, the user has the ephemeral
idea to be able to reach any state in the past, since, in different ways for
different systems. he can handle the list of the Undo and Redo functions. In
practice, he can move hetween the two contexts, Undo and Redo, until he
does not reach a branching point and follows another path. In this way the
old branch is deleted from the Undo or Redo lists. For this reason, although
multiple-undo is more powerful that the single one since it allows the user
to handle directly all the past history, it is also more dangerous. In fact, if
a user cancels many actions with only one Undo (in Word 6 he can cancel
up to 100 actions!) and then he realises that the reached state is wrong
but, accidentally, makes a slip, for example touches the space-bar, then a
branching point is created and all the past history is lost: with a very small
action (as a key press) we can have a big damage.

At the beginniig of this Chapter, we have introduced Undo as a special
case of reachability, as it allows the user to reach a past state. But how can
we informally define the Redo?

The answer is in Figure 5.4. Let’s suppose that, starting from the initial
state sg we have reached state s, by performing only commands. At this

5.6. FINAL ANALYSIS 87

o 0o — — — — -9 — — P
S0 S1 Si Sn
undo redo >

Figure 5.4: The linearity of the history: Undo is the past in the past, Redo
is the future in the past.

point the set of the past state is {sg, 51, ...,5,—1}. Suppose also that per-
forming a multiple Undo we have reached state s;. -Now, s; is the current
state and the set of states which Undo allows to reach is {so, $1,...,8;-1}-
So Undo continues to be a function in the past, allowing the user to go to
the left side of the past history. In the current state, we can say that Undo
is the past of the past. Yet, the set of states which Redo allows to reach
is {8i41, Si+2, --» 8n}. From the current state s; Redo is a function into the
future, allowing the user to go to the right side of the past history. So also
Redo is a special case of reachability, allowing the user to reach a future state
in the past.

Chapter 6

Formal behaviour of

backtrack Undo

In this Chapter we are going to analyse and formally express the relationships
between an original system without Undo and its augmented one, which is
enriched by Undo. Such a formalisation will be done through the definition
of conservative encapsulation. The last does not consider the kind of Undo
(for example if flip or backtrack Undo), but simply captures the idea that the
original system is, in some way, still ‘inside’ the full system with Undo. When
we talk about a particular kind of U/nde, the conservative encapsulation is
not sufficient to capture all the aspects of its behaviour. To this aim we will
introduce two equivalence relationships, a strong one and another which is
weaker, and we will provide four equations, based on the above mentioned
equivalences and on the monotone one, which fully describe the behaviour
of flip and backtrack Undo. Next, we will focus only on the backtrack Undo
and, after providing its formal definition, we will prove that all the backtrack
Undo of the same PIE are behaviourally equivalent.

6.1 Systems with and without Undo

In the previous Chapter, when we provided an informal definition of Undo,
we referred to it as a system function which allows the user to reach “any”
or “the” previous state. But it is difficult to provide a definition of state. A
state represents the situation in which the system is at a given time, and such
a state may have more or less components, depending on what we consider
as a system, and hence on how many components the system has.

89

90 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

One definition of ‘state’ is the one we have in the ‘state’ component of
the ACS model (see Chapter 5). This corresponds to the state of the system
if there were no Undo. Indicating a system without Undo as P , we may call
S the set of states of P . .

If we add Undo to the original system P , we have a new system P*.
In this case, in order to be able to perform Undo, P* must store additional
information, often some sort of history or record of past states. That is, the
full state of the system contains more information than in S. This complete
state of «ll the system, including the bits needed for Undo, we refer to as
St. : ,

In the same way in which we have considered two kinds of state, as the
state of a system without Undo and the state of the same original system
enriched by Undo, we can consider two kinds of action history, one related
to P and the other to P¥. In the case of P, we can indicate the command
history with H, similarly we can use H* for P*.

What we are going to do in the next Sections, is to formalise the rela-
tionships between 7 and P, expressing some formal link between H and
H*, S and S*. In particular, we will introduce the definition of conservative
encapsulation in order to express the idea that the original system is, in some
way, still there ‘inside’ the full system with Undo.

We firstly consider the system without Undo, then look at the full system,
and finally the relationship between the two. The model we will use is a form
of the PIE model [27], using multiple levels of abstraction as in [29)].

6.1.1 ‘System without Undo

In order to study the relationship between P and P¥, we need to be able to
establish if two histories produce the same effect. The word ‘same’ implies an
equivalence relationship. Since to understand the Undo mechanism we need
a deep knowledge of the system behaviour; we require to know if two effects
are the same when they look the same. For this reason, we need to use the
monotone equivalence. with which we can be sure that what looks the same
is really the same. If a PIE is monotone, that is the monotone equivalence
holds, we can talk indifferently of effects or states. By indicating with C' the
set of ‘ordinary’ commands (i.e. not Undo), we can define a state update
function doit as

doit : S x(C' =58

with an initial state sg.

6.1. SYSTEMS WITH AND WITHOUT UNDO 91

We can derive from this function two other functions: doit*, obtained by
iterating doit, and I, the interpretation function of the PIE model:

doit*: Sx H— S
where

doit*(s,<>)=s
doit*(s, h ~ ¢) = doit(doit*(s, h), c)

This iterated version tells us the effect of a whole sequence of commands.
Recall that the sequence of commands, written as H, the command history,
is defined by H = C™, the set of finite sequences of C.

Since P is monotone, we can define the interpretation function in term
of the doit. In this case, we can simply define the interpretation function as
the iterated doit starting from the initial state:

I{h) = doit*(sg, h)
We will also use a dot to represent the ‘curried’ version of a doit function:!
doit(.,¢c): S —= S
where

doit(.,c) = As e doit(s, ¢)

6.1.2 System with Undo

When we consider the system with Undo, as we noted, the state space in-
creases. The set of full states we call .S* and the set of actions A = C UU,
the last expresses that any user action may be an ordinary command ¢ € C
or an Undo. As for the system without Undo, we have a corresponding state
update function doit* and initial state s§. As with the original system we
can define an iterated version deit**. For the same reason that applies for
P, also P*is monotone; this allows us to define an interpretation function
I = doit™ (sg, h). ’

It is important to note that this full state will extend the original state,
not in the sense that there are extra possible states (i.e. not S C S§Y¥),

!Currying is a technique used in functional programming and lambda calculus to sim-
plify the presentation of complex formulae. Some of the parameters of a function are
fixed, giving a function with fewer parameters. In this case, we are fixing the command
parameter of doit, yielding a function doit(.,c), which has one parameter, i.e. only a state.

92 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

but in the sense that each state of the full system has some component (or
effectively such) that corresponds to a state of the original system. That is,
there is a projection function proj, which, given a state of the full system,
gives a corresponding state of the original system.

proj: S* —= S

Typically, the full state contains some form of history information. For
example, a particular Undo system might store the ‘normal’ state and also
the command history (active script). That is, its state would be given by:

St=58xH (example state)

The projection function would then be:
V<s,h>€Steproj(<s,h>)=s (ezample projection)

The exact way in which the original state is extended, and the nature of
the projection fuunction, will differ between Undo functions.

6.2 Encapsulation

When we add Undo to a system PP we expect that, in some sense, the original
system is still inside the augmented one, that is we expect that they behave
similarly when we do not perform Undo. We can show it by proving different
theorems, which are based on different definitions, starting from the one of
encapsulation.

Definition 6.1 (Encapsulation) Given a system P = < H, S,doit, sy >
we say that its augmented system P* = < H*,S* doit*, s§ > is an encap-
sulation of P if therc exist two functions, proj and eff, such that:

(i) proj:S*—= 5 : (C1)
(il) eff : H* = H (C2)
(iil) Vh € H™ o proj(I*(h)) = I(eff(h)) (C3)

Condition (i) represents a link between the sets of states S* and S.
Condition (ii) represents a mapping, between the histories. Such a mapping,
that we indicate with eff, corrésponds to the mapping in which the ACS
model determines the active script from the user history. Finally, condition

6.2. ENCAPSULATION 93

eff proj

I
H—> S
Figure 6.1: Encapsulation

(iii) says that the part of the state corresponding to the original system is
just as if we had executed the effective history. Indeed, the system may
actually be implemented by using the original update functions on this part
of the system state. Note that, this condition says nothing about the way
in which the effective history is related to the action history, merely that it
and the projected part of the state ‘agree’.

The conditions for an encapsulation can be summarised by the commut-
ing diagram in Figure 6.1. The two sides of the above equation correspond
to the two paths round the diagram.

6.2.1 Conservativeness of state and history

The encapsulation condition says that the original system is still in the
augmented one. However, so far we ‘have set no conditions other than that
the effective history and the projection in some sense agree. We want to say"
more. Obviously the new commands may have arbitrary behaviour, but we
expect the original commands to behave as they always did on the original
part of the state. In keeping with other areas of formal specification, we
regard this as a conservativeness property — the original system is conserved
within the extended system. This is formally expressed by the following
definition:

Definition 6.2 (Conservativeness of state) Given a system P* which
is an encapsulation of the original system P, we have the conservativeness
of state if:

94 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

B qu doit'(. ,) qu

\ &

~

1< proj proj

~

~
S T :
S d01§(. , C) S

Figure 6.2: Conservativeness of state.

(i) proj(sg) = so (C4)
(ii) Ve € C,s € S* e proj(doit®(s,c)) = doit(proj(s),c) . (C5)

Condition (i) says that the initial state of the full system (s}) corresponds
(via the projection function) to the initial state of the original system (sg);
condition (ii) says that the effect of applying a command to the full state
is the same as that of applying it to the projected form of the state. This
condition may be captured in a commuting diagram, shown on Figire 6.2.
The main part of the diagram corresponds to condition (ii), and the small
triangle on the left to condition (i). The ‘1’ refers to the set of one element
and the arrows labeled ‘s§’ and ‘s’ are constant mappings (from the single
element of ‘1"). This is simply a formal trick that allows us to include
this information on the diagram. Also note that the functions at the top
and bottom of the diagram are the curried versions of the appropriate doit
functions. They are for a particular command ¢, and strictly one can imagine
a copy of this diagram corresponding to every such command.

In a similar fashion we expect the effective history to behave in a sen-
sible fashion where ordinary commands are concerned. To express this, we
introduce the definition of conservativeness of effective history.

Definition 6.3 (Conservativeness of effective history) Given ¢ system

PY which is an encapsulation of the original system P, we have the conser-
vativeness of effective history if:

(i) eff(<>) =<> (C6)

6.2. ENCAPSULATION 95

Hu_____) HY

<> /7
~
1<’ eff
~
~
<> A

e
eff
~c

Figure 6.3: Conservativeness of effective history.

(i) Yee C,h € H* e eff(h ~¢) = eff(h) ~ ¢ (C7)

Condition (i) means that the effective history corresponding to an empty.
action history should be empty, while the meaning of (ii) is that by adding
an ordinary command to the action history, the same command is addedto
the effective history. Also in this case, the above introduced conditions are
captured in the commuting diagram, shown in Figure 6.3. '

At the right-hand side of the definitions of encapsulation and conserva-
tiveness of state and history that we provided in the previous Sections, we
put a label, an uppercase C followed by a number. Such labels will be used
in the following as a quick reference to such conditions.

6.2.2 Conservative extension — the cube

If all the three diagrams commute. we will say that the augmented system
P is a conservative encapsulation of the original system P . More formally,
we have the following definition:

Definition 6.4 If the augmenied PIE P* = < HY 5% doit*,s§ > is an
encapsulation of the PIEP = < H, S, doit,sg >, and the conservativeness
of state and history hold, then P* is a conservative encapsulation of the
original PIE P .

The whole set of conditions can be captured in a single commuting dia-
gram (Figure 6.4), which we call ‘the cube’. This diagram is rather compli-
cated to read on its own, as it includes the diagrams related to encapsulations
and both to the conservativeness of state and history. The front and back

96 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

U
H 3"—).5 " doit™. , c)

<>_7 N /’7\

/u U

-7 So— 3
1/’,”

= T = o proj

Figure 6.4: The cube.

faces of the cube are two copies of Figure 6.1, the left being Figure 6.3 and
the right Figure 6.2. To make it easier to read the captions at the back’ are
italicsized and those at the front emboldened.

The cube has'six faces: four correspond to the commuting diagrams, but
that leaves out the top and bottom faces. Drawing the bottom on its own,
gives the diagram in Figure 6.5. This refers only to the model of the original
system, and upon examination is simply a restatement of the construction
of I from doit. The top triangle is the initial condition that

I(<>)=so

~ and the square corresponds to the iterated case

I{h ~c¢c)= (loit([(h),é)

The top is similar, except that it refers to the full system.

Both the top and the bottom of the cube commute by the definitions of
I and I*. This is important, as it suggests that some faces of the cube are
redundant, in the sense that they are implied by the others. In particular,
when S¥ represents the sets of all the reachable states, then the encapsulation
and the conservativeness of the history properties imply the conservativeness
of the state. The fact that S“ represents the sets of all the reachable states

‘means that I* is surjective, i.e..the weak reachability property holds (see

6.2. ENCAPSULATION 97

1T~
<> N T~ K
H I S5 .
.ch JdOlt(s C)
H—L >3

Figure 6.5: Bottom of the cube.

Chapter 1). This allows us to say that for any state s in S*, there is a
corresponding action history A from H* which gives rise to s (i.e. s = I'*(h)).

It is important to consider only the reachable states, because, depend-
ing on how one formulates the state of a system, it may include so called
‘carbage’ states. These are states allowed by the description, but can never
occur in a real system. For example, if the position of the cursor in a text
editor is represented by an integer denoting the offset into the text, then it
will always point to a position within the text. However, a simple definition
of the state as:

S =Teaxt x Int

would in principle include unreachable states such as < *hello”, 500 >, where
the cursor points to a location outside the text. Such a state would never
be reached during the normal use of the system and is thus ‘garbage’ in the
formal description. We do not want, nor need to say anything about the
properties of such states, they never happen and are uninteresting.

The fact that the encapsulation and the conservativeness of history imply
the conservativeness of state when /" is surjective, is proved by the following
theorem:

Theorem 6.1 Given a PIEPY = < H*, 5%, doit*, s§ > which is an encap-
sulation of the PIE P = < H, 5. doit, sg >, where S* is the set of reachable

98 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

states of P*, and the property of conservativeness of history holds, then the
property of conservativeness of state holds.

Proof: To prove this theorem, have to prove that, if both the diagrams
of Figure 6.1 and Figure 6.3 commute, then also the diagram of Figure 6.2
commutes. We will consider the two parts of Figure 6.2, the left triangle
and the main square, separately. In the left triangle we have to prove that
the initial states agree, that is we have to prove that:

(i) proj(st) = so
while in the main square we have to prove that:
(i) proj(doit*(s,c)) = doit(proj(s),c)
We firstly prove (i). By definition of I*, since I*(<>) = s§, we have
proj(sg) = proj(I*(<>))
Now, since P is an encapsulation of P , then condition C3 holds, that is:

proj(I*(<>)) = I{eff(<>))

For the conservativeness of history, we have that C4 holds, that is:

I(eff(<>)) =I(<>)

Finally, by definition of I, we have:

I(<>) =39

Clumping all these equalities, we have:

proj(sg) = proj(I*(<>) defn. of I
= I(ceff(<>)) C3
= I(<>) C4
= s defn. of I

]

To prove (ii). applying the weak reachability property, we can choose h;
such that:

s = I(hy)

6.2. ENCAPSULATION 99

Given this definition, we have that:
- proj(doit*(s, c)) = proj(doit*(I*(hs), c))
By definition of I*%, we have that:
proj(doit®(I*(hs), c)) = proj(I*(hs ~ ¢))
Since P* is an encapsulation of P, the condition C3 holds, that is:

proj(I*(hs —~ c)) = I{eff(hs ~)

- Since the conservativeness of history holds, then, for condition C5 we
have:

I(eff{hs —~ c)) = I(eff(hs) ~ ¢
By definition of interpretation function I, we have:

I{eff(hs) —~ c) = doit(I({eff(hs)), €)

At this point, by applying condition C3 to the argument of the doit func-
tion, we have:

doit(I(eff(hs)), c) = doit(proj(I(hs),c)

Finally, by appying again the reachability property, we have:

doit(proj(I(hs).c) = doit(proj(s),c)

Again, clumping all these equalities together, we have:

proj(doiti{s,c)) = proj(doit'(I*(hs),c)) reach. prop.
= proj(l¥(hy — ¢)) defn. of I*
= I(eff(hs —~) C3
= I(eff{hs) ~ ©) Cs
= doit(I{eff(hs)),c) defn. of I
= doit(proj{(I*(hs)),c) C3

| = doit(proj{s),c) reach. prop.

aa

100 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

A consequence of this theorem is that, if S* is the set af reachable states,
then to verify that a particular Undo system is indeed a conservative encap-
sulation, it is sufficient to show that it satisfies the encapsulation conditions
and that the effective history behaves appropriately, since the conservative-
ness of state is given by the above mentioned theorem. This is expressed by
the following corollary:

Corollary 6.1 If « PIE P* = < H", 5%, doit*, s§ >, where S* is the set
of reachable states, is an encapsulation of the PIE P = < H, S, doit,sg >
and the conservativeness property holds for the effective history, then P is
a conservative encapsulation of P .

6.3 Algebraic properties for Undo

In the previous Chapter we introduced a classification of Undo systems,
mainly based on the fact that Undo may belong to the command history or
not. In the last case, {ndo is not self-applicable (i.e. the following Undo does
not reverse the effect of the previous one) and the Undo of the Undo may be
used as a backtrack tool. With the pure backtrack Undo mechanism, for any
application of Undo, the system totally forgets about the cancelled command
and no form of Redo will be possible. The fact that, with the pure backtrack
Undo the system forgets everything about the cancelled command, allows
the user to reach “exactly” the previous state. Using the strong equivalence
introduced in Chapter 1, we have that

¢ — Undo ~ null E1

When Undo belongs to the command history, then it is self applicable and the
Undo of Undo is allowed as the Redo function. We refer to this class of Undo
mechanism as flip Undo. With the flip Undo, after an Undo application,
the user has the sensation that the reached state is the previous one. In
fact, the internal component of the state has also to remember the last
undone command in order to use this information if a Redo occurs. Since
the link between states and effects is expressed by the proj function as
proj(s) = e, then we can formalise the behaviour of Undo in flip Undo by
introducing the projection equivalence ~,,,;. We say that two states sy, so
are projection equivalent, s ~p.,; 82, if they have the same projection, that
is proj(s1) = proj(sg) -the ~p,.; for the state corresponds to the =; for the
programs (see Chapter 1). In case of the flip Undo, we have that

6.3. ALGEBRAIC PROPERTIES FOR UNDO 101

Vs € S¥,c e Ceproj(doit*(s,c ~ Undo)) = proj(s)
or, alternatively
¢~ Undo ~ppo; null E2

Since, if two states are strongly equivalent then they are the same, in the
sense that theyv are equal component by component, then they will also have
the same projection, i.e. the “normal” component of the state. This means
that £l = E2. ‘

The equation E2 is not sufficient to describe flip Undo behaviour, since
Undo of Undo may be used as the Redo function, reaching so “exactly” the
state in which the system was before the first Undo. This may be expressed
by the following equation:

Undo —~ Undo ~ null E3

In both the Undo mechanisms, backtrack and flip Undo, we have not yet
considered what happens when {'ndo is applied at the initial state, when no
command has been vet entered. Generally, in this situation Undo has no
effect, and this is expressed in the following equation by using the monotone
equivalence:

Undo =t null E4

We now have the necessary information to formally express the behaviour
of backtrack and flip Undo. The backtrack Unde may be described by the
two following equations:

¢~ Undo ~ null E1l
Undo =t null E4

while the flip 'ndo behaviour can be described by the three following equa-
tions:

¢~ Undo ~y.q5 null E2
Undo —~ Undo ~ null E3
Undo =t null E4

At the right-hand side of the above introduced equations, we put a label,
an uppercase E followed by a number. Such labels will be used in the
following as a quick reference to such equations.

102 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

Notice that none of these equations capture the strongest informal defini-
tion of Undo that we provided in the previous Chapter. In such a definition
we said that only and at most the previous state can be reached — that is,
multiple Undo is not allowed. The formal definitions are permissive: saying
what you can do, but not restrictive: saying what you cannot do. Such re-
strictive conditions are hard to express over the state, but can be formulated
using the effective history. We can say that the effective history’s lenght is
never more than one, less than the longest it has ever been:

len(eff(R)) +1 > max len(eff(h'))
hi<h

3

Note that the less than or equal relation ‘<’ is being used as a shorthand

for ‘is an initial subscquence of’. That is:

M <h & 3h'"st.h ~h"=h

6.4 The reflexive nature of Undo

In the previous Section, we introduced four equations in order to formally de-
scribe the behaviour of backtrack and flip Undo. In particular, the equations
3 and E1 characterise systems for which Undo is or is not self-applicable.
The combination of the two equations gives a strong Undo property which
has been called thoroughness [88]. However, it turns out to be effectively
inconsistent. Yang [38] proves that the two common forms of Undo system
-backtrack and flip Undo - do not satisfy this strong Undo property. In fact,
it is shown in [25] that no Undo system can satisfy this property except for
those where the underlying svstem has at most two states, as the diagram
of Figure 6.6 shows.

The top and bottom routes round this diagram consider two different
potential interactions from an arbitrary state of the system sg. Following
the upper interaction path in Figure 6.6, the user can reach s, by executing
a, while following the other route, the user can reach s, by executing b. By
performing the ('ndo in the reached state, both the routes go back to the
original state sg, as both ¢ ~ Undo and b ~ Undo are equivalent to the null
command (doing nothing). Finally, consider what happens if Undo is issued
from the state sg. Considering the upper interaction path of Figure 6.6, the
following performed ["ndo in the state so should lead to s,, while, from the
lower interaction path. one would conclude that executing Undo in the state
so should lead to s,. Which is right?

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDO 103

Sa
/ %
a
undo
so SO ————> ?
x 4
Sp

Figure 6.6: Undo of undo?

Well, if the strong Undo property really holds, then both must be right.
That is, s, = s;. But as ¢ and b were arbitrary commands, this means the
effect of any command in the state sqg is the same. Since a and b are arbitrary
(one of them could also be Undo), we see that the system can have at most
two states, with all commands (and Undo) simply toggling between them.
That is, the strong Undo property is impossible to satisfy for any realistic
system, which usually has more than two states.

In other words, although {ndo is reflexive in the sense that it looks in on
the interaction history of the system. it cannot be entirely reflexive, treating
itself on a par with other commands.

6.5 Behavioural equivalence of backtrack undo

In the previous Sections we introduced the relationships between a PIE with-
out Undo and its augmented system, the one enriched by Undo. Now we
focus our attention only on a given class of Undo systems: the backtrack
Undo.

Definition 6.5 (Backtrack undo) A PIE P* = < H® S doit’, s} > is
backtrack Undo of the PIEP = < I. S.doit, so > if:

(i) equations L1 and E4 hold:
(ii) PP is a conservative encapsulation of P .

The meaning of equation E1 is that if we perform Undo in the initial
state as a first command, we have no effect, that is

104 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

doit®(s8, Undo) = s§. Since the system is monotone, we can express the
interpretation function I in terms of the dott function, so that equation E1
may also be expressed as

I{(Undo) = doit®(s}, Undo) = sj.

Moreover, the meaning of equation E2 is that if we perform an Undo
after a command, then we reach exactly the state in which the system was
before Undo was performed. Formally, this is expressed by
(_loitb((loitl’(s’,’l,). Undo) = 8.

Two augmented systems of the same original PIE P may have different
states, but may be identical when viewed in terms of the state of the original
system (using projection). In this case, we say that they are behaviourally
equivalent, that is: '

Definition 6.6 (Behavioural Equivalence) If Pland P?are encapsula-
tion of P with the same augmented command set C® and command history
HY, we say that Pland P2are behaviourally equivalent if

Vh € HY e proj (I (h)) = proj?(I*(h))

Another way to look at this definition is to imagine that the display we
see of Pland P%s via their respective projections, If this is all we can see,
then they behave the same.

Given a PIE P, all its augmented system P° are behavioural equiva-
lent, i.e. any conservative encapsulation of P, satisfying E1 and E4, are
behaviourally equivalent to the pure backtrack Undo This is proved in the
following theorem:

Theorem 6.2 (Behavioural equivalence of backtrack undo) Allthe PIEs
which are backtrack Undo of the same PIE P are behaviourally equivalent.

To prove this theorem, we need the following lemma:

Lemma 6.1 Given a PIE P* which is a backtrack Undo of the PIE P , if
we do a substitution of the function eff with a special eff, eff, so defined
effs, - o' s H

cffs,,(<>) = <>

effsp(= effsp(/l) —cC
cffsp(Un(lo) = <>

eff sp(h —~ Undo) = chopi(cff,,(h))

where

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDO 105

chopy (<>) = <>
chopi(h ~¢) = h
chopryi(h) = chopi(chopn(h))

then P is still a backtrack Undo of P with respect to proj® and the effsp
functions.

In order to prove this lemma. we need to exploit two properties of eff,:

Proposition 6.1 Given the eff, function so defined

sp

effsp H® - H

eff sp(<>) = <>

eff (R ~) = effg(h) ~c

eff s, (Undo) = <>

eff sp(h ~ Undo) = chopi(eff,(h))
where

chopi(<>) = <>

chopr(h ~¢) = h

choppy1(h) = chopy(chop,(h))

then, the two following properties hold :

(i) effs,(Undo™) =<> (P1)

(i) effsy(p ~c—~ Undo ~ q) = ¢ef[,(p ~ ¢) (P2)

where Undo™ indicates the application of n successitve Undo.
Proof (Proposition 6.1): the proof of the above introduced properties is
done by induction. We start with property (i).

(i) basic step, n =10
If n =0, then Undo™ =<>, that is cffsp(Un(Zo) = effsp(<>).
By definition of ¢ff,,, we have that eff;,(<>) =<>.

106 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

(4p) general case
Assume that eff,,(Undo™) =<> holds by inductive hypothesis, then

prove that eff, (Undo™t!) =<> holds.
Since Undo™! = Undo(Undo™), then
eff s,(Undo™*!) = eff ,,(Undo(Undo™)).

we have that

By definition of ¢ff,

eff s, (Undo(Undo™)) = chopy(¢ff 5,(Undo™)).

By applying inductive hypothesis on the argument of the chop;, for which
eff sp(Undo™) =<>, we have that

chopy(eff;,(Undo™)) = chopi (<>)
and by definition of chop;, we have
chopy(<>) =<>.

Clumping all these equalities together, we have:

cvffsp(lhulo”'“) = eff s (Undo(Undo™)) def.of Undo seq.
= chop (Qﬁf.s])(Undon)) def.of effsp
= chopi(<>) induc. hypothesis
= <> def.of chom
0

Now we can prove the property (ii). This is done by structural induction
on .
(ily) basic step, ¢ =<>

We have to prove that eff ;,(p ~ ¢ ~ Undo) = eff ;,(p)

effop(p ~ ¢ ~ undo) = chopi(eff,,(p —~ ¢c)) def. of chopy
~chopi(eff o (p) —~ €) def.of eff,
eff sp(P) def. of chop

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDOQ 107

(i%) general case
We have to prove that eff,(p ~ ¢~ Undo ~ ¢} = eff,,(p ~ q).
In this case, ¢ may be a history h followed by a command or by an Undo

. h — C1 (iibl)
T= 3 h—~ Undo (iiyp)

Assume that the inductive hypothesis is valid until h:; prove it for A + 1.
The one more may be an ordinary command ¢ or an Undo. Consider before
the case (1¢p1)

Left

By definition of eff,, we have that:
effsy(p ~c~Undo ~h ~cy) = eff,,(p ~c~ Undo ~ h) ~ ci.

By applying inductive hypothesis on (p ~ ¢ —~ Undo —~ h), we have that

effsp(p ~c~Undo~Nh) ~cr=¢ff(p~h)~c
Right
By definition of eff,
ffpp ~h~ca)=efg,lp—~ 1)~ a
so the left-hand side and right-hand side are equal.
O(iisa)

Finally, consider the case (i7p3). in which ¢ = h ~ Undo.

Left
By definition of chop;, we have

effsp(p —~ ¢ ~ Undo ~ h ~ Undo) = chop(eff 5,(p ~ ¢ ~ Undo ~ h))
Applying structural induction on {(p —~ ¢ ~ Undo ~ k), we have

012'0])1(€[f31>(1) ~c¢~Undo ~ /7)) = Chopl(effsp(p - h))

Right
By definition of chop;, we have

eff sp(p —~ h ~ Undo) = chop(¢ff,(p ~ 1))
so the left-hand side and right-hand side are equal.

oo

108 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

Before starting the proof of Lemma 6.1, we need to introduce (and to
prove!) another property: ‘

Proposition 6.2 Given a PIE P* = < H®, 5% doit®, s§ > which is a back-
trak Undo of the PIE P = < H, S, doit,so >, then the following property
holds:

I%(Undo™) = & (P3)

Proof (Proposition 6.2): The proof of this property is also done by
induction. Since P! is backtrack Undo of P, the equality E4 holds, that is
I(Undo) = sb.

(1) Basic step, n = 1.
By applying equation 4, we have:

I%(Undo™) = I*(Undo) = sb.
(ii) general case

Assume the inductive hypothesis holds for n, prove it for n + 1.
By definition of (‘ndo we have that

IY(Undo™t!)y = [*(Undo™ ~ Undo)
which, by definition of 7%, is
= doit®(1°(Undo™), Undo)

and the last, being /°({'ndo™) equal to s} by inductive hypothesis, is equal
to

= doit®(s}). Uindo)
which is equal to s} by definition of doit’.

oa

Now, we can start the proof of Lemma 6.1.

Proof (Lemma 6.1): To prove that the PIE P? with the special eff sp
function is a backtrack Undo of P, we have to prove that:

(1) equations 51 and E4 hold,

(2) PP is a conservative encapsulation of P.
The function eff , satisfyes E4 by definition and E1 by property P2, so (1) is
done. We have to prove (2). To prove that 7 is a conservative encapsulation
of P, we need to prove that

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDO 109

(i) P’ is an encapsulation of P;
(i) conservativeness of history holds;
(ili) conservativeness of state holds.

Alternatively, by applying Corollary 6.1, only points (i) and (ii) would
be necessary, since (iii) is a consequence of (i) and (ii). Really, since we have
modified only eff,, function and not proj®, and since the original P® was a
backtrack Undo of P, then (iii) still holds. The point (ii) is simply given by
definition of eff;,. We must prove (i). To prove that P is an encapsulation
of P, means that the diagram of Figure 6.7 commutes. This means that we
have to prove that

vh € H o I(eff,(h)) = proj*(I°(h)).
The proof is provided by induction.We have to consider three cases:
(a) basic step, h =<>;
(b) h=h! ~ ¢
(c) h="h" —~ Undo

Really, for case (c), we have to consider two kinds of history. In fact, the
last may be done by a sequence of n Undo, or by a sequence in which at
least one element is an ordinary command. These two further conditions are
expressed respectively in

(c1) h=Undo™;

(CQ) h = /IA —_ —~ (j'/'?,(_lon_k‘_l:

where Ny is a sequence of & elements of I7°.

(a) basic case, h =<>.
In this case we have to prove that

projt(It(<>)) = I'(eff ,(<>))

Left
By definition of I® we have that

proj(Ib(<>)) = proj®(sh).

110 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

b
I‘P___I____)b

S
effSp projj(
S

Figure 6.7: Encapsulation with the eff, function

Since there is conservativeness of state, then proj®(s) = sj.
Right
By definition of ¢/f,, we have

I*(eff p(<>)) = 1b(<>)

which is equal to s by definition of I°.

(b) Assume that Yh € IT® e prog®(I°(h)) = I(effsp(h)),
then we have to prove that

Yhe HY ce Ceproj’(I*(h ~ ¢)) = I(eff sp(h —~ €)).
Left

By definition of I* we have that
projo(It(h ~ ¢)) = proj®(doit®(1°(h), c))
By applying conservativeness of state, we have:
prog®(doit®(1°(N). ¢)) = doit(proj®(I°(h), c))
By applying inductive hypothesis on h, we have:

doit(proj®(I*(h).c)) = doit(I(eff,(R), c))

Finally, by using the relationship between doit and I, we have:

doit(I(effs,(h),) = I{effy,(h) ~)

O(a)

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDO 111

Right
By definition of eff,, we have that

I(eff sp(h — €)) = I(eff 5, () — ¢)

so the left-hand side and right-hand side are equal.

(c1) In this case h = Undo™.

Assume that proj®(I°(Undo™)) = I{eff ,(Undo™)),
then we have to prove that
proj® (I (Undo™ ~ Undo)) = I(¢ff s, (Undo™ ~ Undo}).
Left

For P3 in Proposition 6.2 we have that I°*(Undo™) = s§, so

proj® (IY(Undo™ ~ Undo)) = proj®(I°(Undo™t)) = proj®(sh)

By applying conservativeness of state, we have proj®(sd) = so.

By applying P1 of Proposition 6.1, for which eff,,(Undo™) =<>, we
have that

I(eff o (Undo™*1)) = T(<>)

and, by definition of I, we have [{<>) = sg.
So, the left-hand side and right-hand side are equal.

O(c1)

(cg) In this case h = by —~ ¢ ~ Undo"=5=1,

Assume that
proj°(Ib(hy ~ ¢ ~ Undo™ "1y} = [(eff (e —~ ¢ —~ Undo™=F=1)),
then we have to prove that
projb(lb(/zk —_~c ~ L“'nr[o"‘k)) =](cffsp(/zk —C ~ Un(lo”"’")).
Left

By definition of {/ndo, we have
proj®(I’(hy —~ ¢ ~ Undo™ %)) = proj®(I°(hy ~ ¢ ~ Undo ~ Undo™*~1))

which, by applyving equation E1, becomes

= proj®(I'(hy ~ Undo™*=1))

Now, being the sequence hy —~ Undo
applying structural induction we have:

n=k=1 shorter than n + 1, then, by

112 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO

il
H————>S

e& w.l
H __.__.._> S
effs roj°
H—>§
Figure 6.8: Pland P2%are encapsulation of the same PIE P.

proj®(I*(hy ~ Undo™=*=1)) = I(eff ., (hi ~ Undo™=*-1)).

Right
Since ¢ff ;, satisfies equation E1 (P2 in Proposition 6.2), we have:

I{effsy(hie ~ ¢~ Undo™*)) = (eff sp(hg ~ Undon=*-1)

so the left-hand side and right-hand side are equal.

0oa

Finally, we can now provide the proof of Theorem 6.2:

Proof (Theorem 6.2, Behavioural equivalence of backtrack Undo): Let
us consider two PIEs, P'= < Hy, Sy, doitl, s} > and P?= < Hy, So, doit?, s3 >
which are backtrack Undo of the same PIE P = < H, S, doit, sg >. We have
to show that they are behaviourally equivalent, that is the diagram of Fig-
ure 6.8 commutes.

Since Pland P2are bactrack Undo of the same PIE P , then H! =
H? = HY = H U Undo. TFor this reason, the diagram of Figure 6.8 may
be redrawn as in Iigure 6.9. To prove the commutativity of this diagram,
we have to prove that Vi € II°, proj (I (h)) = proj*(1?(h)). By applying
Lemma 6.1, if we make a substitution of eff; and eff, with eff,,, then the

6.5. BEHAVIOURAL EQUIVALENCE OF BACKTRACK UNDO 113

b————————-} S ‘
1
. x XTJ
_ I S5

id effsp ; broj 2

P > s

Figure 6.9: Another way to represent that Pland P%are encapsulation of the
same PIE P.

upper and lower parallelograms of Figure 6.9 still commute. So, by applying
the commutativity of the upper parallelogram of Figure 6.8 (due to the fact
that Plis an encapsulation of P) we have:

Vh€ HY proj (I (k) = I(eff (h)).
By applyving Lemma 6.1, we have
Vh € H® I(effi(h)) = I(eff,(h)).
In the same way we have
Vh € HY, proj(I*(h)) = 1(eff,(h)) = T(eff 1p(R)
aa

Theorem 6.2 says that, even if we have different implementations of the
backtrack Undo of a given system, they are all equivalent. Such an equiva-
lence is in terms of the effective history, and we cannot say anything about
the relationships between the scts of states of the involved PIEs. The mean-
ing of this theorem is that, from the user point of view, all the backtrack
Undo of the same system have the same behaviour.

Chapter 7

Upper and lower bound of
backtrack Undo

In the previous chapter we proved that all the backtrack Undo of the same
original PIE P, even if they have different implementations, are behaviourally
equivalent, that is from the user’s point of view they have the same be-
haviour. In proving such equivalence, we established a relationship between
backtrack Undo PIEs, a relationship based on the effective history. What
can we say on the sets of states? Is it possible to find the “biggest” and
the “smallest” set of states? We cannot say precisely what there will be in
any set of states, but for any backtrack Undo P® we can establish a kind of
partial order, finding a lower and upper bound. We will call such lower and
upper bound P™" and P™ respectively. In this Chapter we are going to
prove that for any P° there exists a homomorphism from the set of states
of P™%% and the one of P°, and similarly that for any Pb there exists a
homomorphism from the set of states of P° to the one of P™", At the end
of the chapter, such homomorphisms will be used to provide a categorial
representation of backtrack Undo. In fact,we will prove that the class of
all the backtrack Undo of the same original PIE 7 is a category and that
P™e® and P™™ are the initial and terminal element of such a category.

7.1 The maximal backtrack Undo
In this Section, we are going to introduce a backtrack Undo with the char-

acteristic that the set of state is as “big” as possible (in the sense of the
reachable states). We will refer to such a PIE as P™%%, the maximal back-

115

116CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

I-P____GEP_) H

effp I

H—1 > S

Figure 7.1: P™%% is an encapsulation of P.
g

track Undo. The word “maximal” is due to the fact that, as we will prove at
the end of this chapter, P™%* is maximal in the class of the backtrack Undo
of the same original PIE P. We can define P™** as follows:

Hmaz = JIb
Smaex = H
Ima'x = e.ffs])
e e = el
projmer = I(h)

~ Such a PIE is a backtrack Undo of P, and this is proved in the following
Lemma:

Lemma 7.1 P™** s backtrack Undo of P.

Proof: To prove this Lemma, we have to show that :
(i) P™e* is a conservative encapsulation of P;
(i) equations E1 and E4 are satisfied.

By applying Theorem 6.1, in order to prove that P™2” is a conservative
encapsulation of P, we need to prove that it is an encapsulation of 7 and the
conservativeness of history holds. This means that we have to show that both
the diagrams of Figure 7.1 and Figure 7.2 commute. The commutativity of
diagram in Figure 7.1 is obvious, since the upper and lower path, starting
from H® to S are equal, while the commutativity of the diagram in Figure 7.2
is given by the definition of eff,.

Consider the doit™® function and initial state sJ** defined as follows:

7.1. THE MAXIMAL BACKTRACK UNDO 117

<> /7

7~
P

1< - effsp effsp
~
<>
H_-"¢c 3 H

Figure 7.2: Conservativeness of history for P™e* |

doit™*® :Hx A— H

doit™** (<>, Undo) =<> (1)
doit™3* (h, c) =h~c (2)
doit™**(h, Undo) = chopy (h) (3)
e < (4

If such a doit™** is the state update function corresponding to I™%%,
then, in order to verify that the equations E1 and E4 hold, we have to verify
that

(a) dout™**(sg?*, Undo) = sJ**,
(b) doit™*(doit™* (s7*% ¢), Undo) = sy,

Clearly, both (a) and (b) hold, but we have to prove that doit™** corre-
sponds to I™** (and so also show that is P™4% is monotone). At this aim,
we need to prove that:

(i) Imer(<>) = g%
(i) 1™ (h ~) = doit™s*(I™**(h), x)

where z € A, that is it may be an ordinary command or an Undo.
We will prove before (i):

I (<>) = eff,(<>) def. of [/™me*
<> def. of eff,
= 55" def. of s§**

118 CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

0(2)

In order to prove (ii) we have to consider two cases, (i7;) in which z is
an ordinary command ¢ € C, and (¢73) in which z is an Undo.
(iij)z=c¢c

Left
Ime*(h ~ c¢) = eff o, (h ~) def. of I™*®
= ¢ff,(h) ~c def. of eff,,
Right
doit™** (™ (h),)= doit™** (eff ;,,(h), ¢) def. of [™e®
=effs,(h) ~¢ def. of doit™**

So, left-hand side and right-hand side are equal.

D('I,Zl)
(ii;) 2 = Undo
Left
1" (h ~ Undo)= eff ,(h ~ Undo) def. of [™a=
= chopy(eff 5, (1)) def. of doit™e*
Right
doit™* (™= (h), Undo)= doit™* (eff ,, (), Undo) def. of I™a®
= chop;(¢ff (1)) def. of doit™e*®

So, left-hand side and right-hand side are equal.

Oa

7.2. THE MINIMAL BACKTRACK UNDO 119

7.2 The minimal backtrack Undo

As P™4% represents the maximal backtrack Undo, similarly we can find the
minimal backtrack Undo. Such a backtrack Unde should have the set of
states as “small” as possible. We will refer to such a PIE as P™", Its
characteristic is that its state is a sequence of states (of the original system)
with the peculiarity that instances of the initial state are omitted from the
beginning of the sequence. So, if the user in the initial state performs some
actions which does not change the state, then there is no trace of such
actions, since, by perfoming Undo, we will not change state. We can define
P as follows:

Hm™n = Hb

sz’n B

s =< >

dOitmin :Smin X A — Smin
doit™" (<>, ¢) =< doit(sg, ¢) > doit(sg, c) # so
doit™" (<>, c) =<> doit(so, ¢) =
doit™™ (hy, c) = hs —~ (doit(last(hs). c) hs #<>
doit™™ (hg, Undo) = chopl(hs)

effmin‘: effS.p

projm™t L ST §
proj™r(<>) = s
proj ™ (k) = last(hs) hs #<>

The interpretation function /™™ is not explicitely defined above, as it
is obtained by cinstruction from doit™" using the standard construction as
introduced at the end of Section 1.7.2. As for P™9% also P™" is backtrack
Undo of P, and this is proved by the following Lemma:

Lemma 7.2 P™™" is a backtrack Undo of P.
Proof: To prove that P™" is backtrack Undo of P, we need to show that:
(i) equations E1 and E4 are satisfied;
(ii) P™"is a conservative encapsulation of P.
To prove (i), we have to show that

(a) doit™*(s7™ Undo) = s

120CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO
(b) doit™™(doit™™(hs,¢), Undo) = hs.

(a)

doit™™ (sp", Undo)= doit™™(<>, Undo) def. of spim
= chop(<>) def. of doit™"
=<> def. of chop
= g def. of spHn

(b)

doit™™ (doit™™ (hy, ¢). Undo)= doit™"(hs ~ doit(last(hs),c), Undo) def. of doit™™

= chop(hs — doit(last(hs),c)) def. of chop,
= h, def. of chop;
O(b)

Now, to prove that P™" is a conservative encapsulation of P, we need
to prove that 7™ is an encapsulation of P , there is conservativeness of
history and then we can apply Theorem 1. Since H™" = H® = H™a% and
&ffinin = €ff sp = €ff maz» then the diagram of the conservativeness of history
for P™" is the same as in Figure 7.2, which commutes by definition of eff .
So we have only to prove that P™" is an encapsulation of P, that is the
diagram of Figure 7.3 commutes.

Such diagram commutes if

Yh € I o 1(cff ,,(h)) = proj™™(I™™(h)).

The proof is done by structural induction on h.
We have to consider the the following cases:

(1) base case h =<>;
(2) general case h = h — ¢y, 0, = ¢

(3) general case h = h — ¢y, ¢, = Undo.

7.2. THE MINIMAL BACKTRACK UNDO

' 3

|

121

min
prog

Figure 7.3: P™" is an encapsulation of P.

(1) base case, h =<>

Left

I(eff op(<>)) =1(<>)
= Sg

Right

projmi”(]mi"'(<>)): projmi”(sg“"’"°)
= projmin(<>)

= Sy

(2) General case, h = h ~ ¢, ¢, = c.

def. of eff,
def. of [

def. of I™
def. of sp*"

STt

def. of proj

Assume that I(eff;,(h)) = proj ™ (I (h)), then prove that

I(effsp(h ~c)) =])I‘ijin([mi"‘(h ~ ¢))

Left

Keffsp(h ~) =1(effp(R) ~ ¢)

= doit(I(eff5,(R)),)
= doit(proj™n(I™"(h)), c)-

def. of eff,,
def. of T

induc. hyp. on I{eff,,(h))

122CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

Right
By definition of 1™ we have that:
p.,.ojmin(lmi}z(h — c)) = projmi"(doitmi”(Imin(h), c))

At this point, the argument of doit™™ has h as length, so we can apply
structural induction. This means that, for that argument, we have a con-
servative encapsulation, so we can apply condition C5 (conservativeness of
state) on proj™" and doit™™, obtaining:

proj™n (doit™ ™ (I™™(h), ¢)) = doit(proj™*(I™"(R)),)
0(2)

(3) General case h = h —~ ¢, ¢, = Undo.
We have two differentiate two subcases, depending on the nature of the
history:

(3a) h = Undo®

(31)) hr = h.k i [f))(1071—k—1

(8a)

By definition of ¢ff,,, we have that

spt
](effsp(Undo”“)) =1(<>)
that is equal to sy by definition of I.
Right
For property P3 of Proposition 6.2, for which I™"(Undo™) = sf", we
have that

p,.ojmin(]min(U”(]On+l)) — 1),,.ijin(sgzin)

which, by definition of proj™®, is equal to sg. So, left-hand side and right-
hand side are equal.

0(3a)

7.3. EXISTENCE OF A HOMOMORPHISM FOR pPMAX 123

(8b) h = hy ~ ¢ ~ Undo*1

Left
By definition of Undo, we have that

I{eff op(hi, ~ ¢ —~ Undo™ %=1 ~ Undo))
= I(effs,(hx ~ ¢ ~ Undo ~ Undo™*-1))

which, since eff , satisfies equation E1, becomes:
= I(effsp(hk — U'n(lon—k—l))

The argument of the eff, is shorter than h, so, by applying structural
induction we have that

I(eff s (R ~ Undo™*=1)) = proj™n(I™" (k). ~ Undo™ *~1)).

Right

By definition of Undo, we have that

prajmin(fmin(hk —_C —~ Und()n—-k—l —_ Undo))
= proj™n(I™" (hy ~ ¢ ~ Undo ~ Undo™*=1))

Since E1 holds, we have that

proj™n(I™ (hy, ~ ¢ ~ Undo —~ Undo™ %))
= proj™*(hy ~ Undo™ =1

So, left-hand side and right-hand side are equal.

ao

7.3 Existence of a homomorphism for P™%*

In the previous chapter, we proved that all the backtrack Undo of the same
PIE are behaviourally equivalent, in the sense of the effective history. But
we had not yet the suitable information in order to tell something also on
the sets of states of the considered backtrack Undo. The following theorem
express a relationship between the set of states of P™%* and the one of
a general backtrack Undo P°, both of them backtrack Undo of the same

124CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

ax [max

Hm__H Smax

H— > S

Figure 7.4: Encapsulation of the maximal PIE and of a backtrack undo of
the same original PIE P.

H

Figure 7.5: The homomorphism between the maximal PIE and a backtrack
undo of the same original PIE P.

7.3. EXISTENCE OF A HOMOMORPHISM FOR PMAX 125

original PIE P. The meaning of this theorem is that, even if we cannot have
all information of the sets of states of the backtrack Undo, there is a kind of
upper bound on such information and such upper bound is represented by
S™mar We cannot have more information (in sense of reachable states) than

Sma:z:

Theorem 7.1 Given a PIE P’ and the PIE P™%, both of them backtrack
Undo of the same original PIE P, then there exists a« homomorphism f,
f:8me% 5 St such that the diagram of Figure 7.4 commutes.

Proof: Considering the definition of P™%%, we can redraw the diagram

of Figure 7.4 as in Figure 7.5. The last commutes if it commutes for any
path starting from the source node H and arriving to the target node S.
This means that we have to prove that the square and both the triangles
commute. Since PP is a backtrack ['ndo of P, then the square commutes.
Now, we can redraw the two triangles into the square of Figure 7.6. Such
a square, without the f function, commutes because, due to the fact that
both P™a* and PP are backtrack Undo of the same PIE P, we have that
Yh € Hb e I(effsp(R)) = proj®(I°(h)). When we add the f function, we
don’t need to prove the commutativity of both the triangles, but only of
the upper-left one. In fact, if the last commutes, since eff,, is surjective,
then, by exploting the composition of functions and the commutativity of the
square, we can easily derive the commutativity of the lower-right triangle.
So, our thesis becomes to prove that Yh € H® e I°(R) = fleffsp(h)). In
the upper-left triangle, the f function represents a 0 — morphism between
Pz and PP,
To prove this theorem, we need to introduce a function, nat : H — H?,
which is the natural injection of H in H°. Such a nat function is the right
inverse of eff,. so that €ff,, o nat = id. We assert that f = I® o nat is
a suitable function producing the required 0-morphism between P™%* and
P, Considering this choice of f and the definition of I™*%, the thesis of this
theorem becomes to prove that

VYhe HY e I°(h) = [l’(n(_tt(cffs,[_)(/z))),
that is the diagram of Figure 7.6 commutes. Also this proof is done by
induction. We consider four different cases:

(a) h=<>;

(b) h=h ~¢;

126CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

I_lb Imax: effsp > H

10 I

Y 1oj Y
s P 5 g

Figure 7.6: The 0-morphism f.

(¢} h =Undo™;

(d) b= hy —~ ¢~ Undo™*-1,

(a) h =<>.
Left

By definition of /* we have that I°(<>) = s}. |
Right

By definition of e¢ff,, we have that:

sp
IP(nat(eff ,,(<>))) = I*(nat(<>))
Since nat is the natural injection of H in H®, then we have:

IP(nat(<>)) = I"(<>)

which, by definition of /%, is equal to sj.

O(a)

(b h=1 ~c.
Assume that I°(h) = I®(nat(eff,(h))), prove that
I8(h —~ ¢) = Ib(nat(eff,(h ~ c))).

Left

7.3. EXISTENCE OF A HOMOMORPHISM FOR PMAX 127

By definition of I® we have that I°(h ~ ¢) = doit®(I*(h), ¢).

Right
By definition of eff, we have that

IP(nat(eff oy (h ~ ©))) = I(nat(eff () ~ c))

Similarly, by definition of nat, we have that

1P (nat(eff op(h) ~ €)) = IP(nat(eff 1y(R)) ~ c)

By deﬁnition of I® we have that:
I (nat(eff o (h) —~ ¢)) = doit®(I"(nat(eff , (R)). ¢))
By applying inductive hypothesis on the I?, we have:
cloitb(Ib(nat(qﬁfsp(/1,)), ¢)) = doit’(1°(h), ¢))
s0, the left-hand side and right-hand side are equal.
a(b)
(¢) h=Undo™.
We need to prove that I°(Undo"+') = I*(nat(eff ,,(Undo™1))). Left
By Property P3 of Proposition 6.2, we have that I°(Undo™*!) = s3.
Right 4

By Property P1 of Proposition 6.1. we have that]b(nat(effsp(Undo”“))) =
IP(nat(<>))

which, by definition of nat is
= [b(<>)

and the last, by definition of I?, is equal to Qg So. the left-hand side and
right-hand side are equal.

O{e)

(d) A= hy ~ ¢~ Undo™=*71,
Assume that the inductive hypothesis holds for all 2’ where length(h’) <
n, prove that

128CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

I%(hg —~ ¢ ~ Undo™*~1 ~ Undo)
= I*(nat(eff ,, (hx ~ ¢ ~ Undo™=*=1 ~ Undo))).

Left

By property of Undo, we have that

I%(hy, ~ ¢ ~ Undo™*=1 ~ Undo)
= I%hy, ~ ¢ ~ Undo ~ Undo"=*-1)
which, by applying equation E1, becomes equal to I*(h; —~ Undo™*~1).
Right
By applying Property P2 of Proposition 6.1, we have that

Ib(na‘t(effsp(hk ~ ¢ ~ Undo™ k-1 ~ lfn(lo)))
-]b(nat(c«;/fsp(/;,k — Undon—k—l)))

Since this sequence is shorter than n, then we can apply inductive hy-
pothesis, obtaining:

I*(nat(eff (hi ~ Undo™=*=1))) = I(hy, ~ Undon=*-1)

s0, left-hand side and right hand side are equal.

oo

7.4 Existence of a homomorphism for P™"

As we wanted to prove that P™** is the maximal backtrack Undo, similarly
we want to prove that P™" is the minimal one. Being the structure of
P™in more complex than P™% we have to introduce functions and prop-
erties that we will use in the following proofs. We are going to start by
introducing some functions useful while proving that P™" is monotone.

Proposition 7.1 Given the function ¢; : H® — S such that
Vi > 0,8;(h) = I(chopi(eff,,(R))), then the following properties hold:

do(h —~ ¢) = doit(¢o(h), c) P4
ilh ~c) = dirth) P
oi(h ~ Undo) = ¢iyr1(h) P6

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 129

Proof: The proof is done by induction.
(P4)
By definition of ¢;, we have that
¢0(h - C) = I(ChOPO(effsp(h' - C)))
which, by definition of chopy is equal to I(eff,,(h — c)). By definition of
effs,, we have that
I(effsp(h — c)) = I{eff g (R) — ¢)
which, by definition of I, is equal to doit(I(eff,,(h)),c). But, by definition

of ¢g, we have that

doit(I(eff,(h)), c) = doit(ao(h). c)

O(P4)
(P5)
By definition of ¢;, we have that
gs(h ~ ¢) = I(chops(eff ,,(h ~ <))
which, by definition of eff, is equal to I{chop;(eff,(h) ~ c)).
By definition of chop;, we have that
I(chop;(effs,(h) —~ ¢)) = I{chop;—1(eff 5, (R)))
which, by definition of ¢;, is equal to o;_1(h).
a(Ps5)

(P6)
By definition of ¢;, we have that

oi(h ~ Undo) = I(chop(cff g, (h ~ Undo)))
By definition of eff,, we have that
I(chop;(eff s, (h ~ Undo))) = I{chop;(chopi(eff 5, (R)})

which is equal to I(chopiyi(eff, (7).
By definition of ¢;, we have that

[(Chopi-i-l(effs'p(h)) = ,@H'l (h)
(|

130CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

Interpretation function of P™"

In Section 7.2 P™i" was defined in terms of its state update function doit™im,
Although it is possible to derive the interpretation function ™" from that
of doit™™, we will find useful to have an explicit definition' of /™™, We
therefore have to find a suitable interpretation function I™" and we have to
prove that it corresponds to the doit™™ function. This is formulated in the
following proposition:

Proposition 7.2 Given the function I™" : H — S* such that

°]min(h) =< Pp—1 (/1,), ¢n_2(/7,), Cey ¢1(h), ¢0(h) >,
where n < length(eff,(h));

b Cpn—l(h’) # 503

o ¢;(h) = s0.Yi>n

then I™™ corresponds to the doit™™,
Proof: In order to prove that /™" corresponds to doit™", we have to prove
that:

(a‘)]min(<>) — S'bnin;
(b) ™ (h —~ ¢,) = doit™™(I™"(h), ¢,)

where ¢, indicates an ordinary command ¢ € C or an Undo.
i .

(a)
Left
If h =<>, then length(effs,(h)) = 0, so Vi, ¢;(<>) = sg. This means
that I™"(<>) =<>.
Right
s =< > by definition of spH™,

O(a)

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 131

(b) For the case (b) we have to consider two subcases, depending on ™™,
We have to consider the case in which I™"(h) #<> and the other in which
I™"(h) =<>. In the previous one, we have other two subcases: the first
in which ¢, is an ordinary command ¢ € C, the second in which ¢, is an
Undo. Moreover, when I™"(h) =<>, we have to consider the case in which
we perform a command still remaining in the same state, or we perform a
command and we change state, or we perform and Undo. This cases are
skematised as follows:

(ba1) I™™(h) #<>. cu = ¢

(baa) I™"(R) £<>, ¢, = Undo:

(bp1) I™™(R) =<> , ¢, = ¢, doit(sg.¢) = So;
(bpa) I™"(h) =<> ¢, = ¢, doit(sg, ¢) # So;
(by3) I™(h) =<>, ¢, = Undo.

In all the three (Uy) cases. the fact that I™"(h) =<> means that
VZ. CDZ(IZ) = S0.
(bavl)
Left
The left side is given by the enunciate of the proposition.
Right
By definition of doit™™ we have that:

doit™ (1™ (h), ¢) = I™"(h) ~ (doit(last(I™"(R)), c)

Since I™" =< @n_1(h), On_z(h),...,01(h), do(h) >, then its last ele-
ment is @g{h). So, by applying the definition of /™™ to the argument of the
doit, we have:

I () ~ (doit(last(I™™(h)). c) = I™"(h) ~ (doit(¢g(R)), ¢)
By applying porperty P4 of Proposition 7.1, we have:

I™in(h) ~ (doit(oo(h)),€) = I (1) ~ so(h ~ ¢)
which, by definition of 1™, becomes:

I (R) ~ @o(h — ¢)
=< on_1(h), on_a(N),....01(N), 00(N), po(h —~ ¢) >

132CHAPTER7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

By applying property P5 of Proposition 7.1, we have that

< ¢n—1(h)s ¢n—2(h'), . -;¢1(h)a ¢O(h), ¢0(h — c) >=
< Gp(h —~ €)ypn_i(h —~ ¢),...,¢2(h —~ €),d1(h — ¢), po(h —
c) >

which, by definition of ™", is equal to I™"(h ~ c).
So the left-hand side and right-hand side are equal.

(ba2)

The left side is given by the enunciate. of the proposition.
Right

By definition of deit™™, we have that:

doit™in ([(k). Undo) = chop, (I™™(R))

By definition of ™", we have that:

6'1107)1 (Imm(h)) = ('I?O])l(< Pn-1 (h)a ¢71—2(h)v ey ¢1(h‘)a d)O(h) >)
=< ¢n-—1 (h')» (Dn.—'l(h)» Py ¢1(h) >

which, by applving property P6 of Proposition 7.1, is equal to

< Puao(h — Undo),...,¢1(h —~ Undo), go(h ~ Undo) >
Finally, by applying again the definition of I™", we have that:

< Gpog(h — Undo),....¢1(h ~ Undo), go(h ~ Undo) >
— ['min(h — Un(/())

So the left-hand side and right-hand side are equal.

(be1)

Left
By definition of ™", we have that

'Inu’n(h — C‘) =< (pn_l(h ~~ C), .. ,,¢0(h ~ C) >

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 133

By applying property P5 of Proposition 7.1,
we have that Vi > 0, ¢;(h —~ ¢) = ¢;-1(h)
In this way, we can rewrite imin as follows:

Imzn(h —_ C) =< ¢n-—2(h)’ .. .,¢0(h),¢0(h ~ C) >

Since I™"(h) =<>, that is Vi, ¢;(h) = sq, that is
Vi > 0, ¢:(h —~ ¢) = sg, then imin is as follows:

I™"(h ~ ¢) =< ¢o(h —~ ¢) >

By property P4 of Proposition 7.1 we have that

$o(h ~ c) = doit(¢o(h).).
Since Vi, ¢;(1h) = so, then we have that

doit(go(h), ¢) = doit(sp, ¢)

We are in the case in which doit(sg,¢) = sg, so that, clumping the last
equalities involving the doit™", we have

Po(h — ¢) = doit(@o(h), ¢) = doil{sg,c) = s

This means that ¢;(h —~ ¢) = sg Vi, including also the case of i = 0. So,
by definition of /™", we have that:

I~ ¢) =<>
Right

In this case, I (h) =<> , Vi,0;(h) = sq, ¢y = ¢, and doit(sg, c) = 5.
So, by definition of doit™"™, we have that:

doit™™ (™" (h), ¢) = doit™ ™ (<>, ¢) =<>

So the left-hand side and right-hand side are equal.

(bs2)

Left

The proof of the left-hand side of the case (bpg) is the same as the left-
hand side of the case (by;) but the last step. Anyway, in order to avoid to
lose one’s bearing, we report the proof step by step.

By definition of I™™, we have that

134CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

Imin(h - C) =< ¢n-—1(h' - C),. '~1¢0(h’ - C) >

By applying property P5 of Proposition 7.1,
we have that Vi > 0, ¢;(h —~ ¢) = ¢i—1 (h)
In this way, we can rewrite imin as follows:

™" (b~ ¢) =< ¢p_a(h),..., do(h), po(h —~ c) >

Since I™™(h) =<>, that is Vi, ¢;(h) = sp, that is
Yi > 0,0:(h —~ ¢) = s¢, then imin is as follows:

[min(h —_ (j) =< g’)o(h - C) >

By property P4 of Proposition 7.1 we have that
@olh —~ ¢) = doit (¢o(N). c).
Since Vi, ¢;{h) = s, then we have that

doit(do(h).c) = doit(so,)
that is
oo(h —~ ¢) = doit(og(h), ¢) = doit(sg, c)
Since we are in the case in which doit(sg, ¢) # so, then we have that :
I (h ~ ¢) =< doit(sg.c) >
In this case, /™" (h) =<>, Vi, ¢i(h) = so, ¢y = ¢, and doit(so, ¢) # So.
By definition of doit™", we have that:
doit™™ ("™ (h), c) = doit™ ™ (<>, ¢) =< doit(sp, ¢) >.

So the left-hand side and right-hand side are equal.
D(bbg)

(bs3)
This is the case in which 1™ (h) =<>, which implies that Vi, ¢;(h) = so
and ¢, = Undo.

Left
By definition of 7", we have that

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 135

I™"(h ~ Undo) =< ¢n_1(h —~ Undo),...,é0(h ~ Undo) >
_ By applyving property P6, we have that
I™n(h ~c) =< ¢n(h),...,01(h) >

but, since we are in the case in which Vi, ¢;(h) = sp, then
I (b~ ¢) =<>

Right
Since I™"(h) =<>, then we have that

doit™m (™ (R, Undo) = doit™™ (<>, Undo)

which is equal to <> by definition of doit™™.
So the left-hand side and right-hand side are equal.

7.4.1 A new kind of interpretation function

The I™™ function introduced in the previous Section associates a sequence
of states to any history given as input. But such a sequence is starting from
a state which is different from the initial one. In fact, S™" is “smaller”, with
respect to the sets of states of other backtrack Undo of the same original
PIE P, because it does not consider the initial state, and any its repetition,
’ at the beginning of the sequence. Since the difference between P™" and any
) other backtrack Undo of the same original PIE P is exactly in the fact that
) in P™" the sequence of states is chopped when at the beginning we have
- a repetition of the initial state, in order to establish a relationship betwen
S™in and the set of states of another backtrack Undo, we need to introduce
another interpretation function. Such function should consider also the case
of sequences of states infinite to the left, that is with any number of initial
state at the beginning. At this aim we introduce the following function:

strip: Sg™ — S§”

strip(hs) =<> if hs = s
striplhy, —~ 8) = sirip(hs) —~ s if s # sg
- strip(hs —~ s9) =<>) if strip(hs) =<>
- striplhs ~ so) = sirip(hy) — sg otherwise

136 CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

where S5 °° is the set of the sequences of states s € S, sequences infinite to
the left, in which the infinity is given by a sequence of any number of initial
state.

Proposition 7.3 Given the strip function as above defined, the following
property holds:

<> ifhy=<>

strip(sg —~ h) = { hs if first(hs) # so

Proof: To prove this property, we have to consider the case in which the
sequence of state hy is empty, hy =<>, or not. In the second case, at least
the first element of /i, is different from the initial state. These two cases are
skematised as follows: '

(1) hs =<>;
(2) hy =8~ hyt, s # s0.
(1)

By definition of strip, we have that:
strip(sg —~<>) = strip(sy) =<>

(2)

The proof of (2) is done by induction on AL.

(21) base case: hy =<>
By definition of s(rip we have that:

strip(sy —~ s —~ W) = strip(sy — s) = strip(sg) ~ s =
<>~ s=<L 52>

(2ii) assume valid: strip(sy —~ s ~ h) =s —~ N, prove that
strip(sy ~ s~ 0, ~&y=s~Nh ~ 4.

By definition of strip, we have that

strip(sg —~ s — Wy ~ §') = strip(s§ ~s ~ hl) ~ ¢

Now, we can apply inductive hypothesis on the argument of the strip,
obtaining s —~ hf —~ . Such an equality holds independently if s’ is the
initial state or another one. ‘

(]

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 137

Now we can introduce an interpretation function which associates to any
input a sequence of states infinite to the left.

Lemma 7.3 Given the function

I'(h) : H* = S5°° .
I'(h) = s§ —~ I™"(h)

then Yh € H®, I™"(h) = strip(I'(h)).
Proof: The proof follows directly from the properties of the strip function
and the definition of I™™.

ao

Before to enunciate the theorem of existence of a homomorphism for
P we need to introduce other functions and properties. Indicating with
S7°° the set of sequences infinite to the left, we can introduce the following
function:

g 5% — 5
g/(S) =< .. .,gi(S), cees gols) >
where every ¢; is so defined:
i Sb - S
gi(s) = proj®(ki(s))
where k; = S® — §°
ko(s) = ¢ :
ki(s) = doit® (ki1 (s), Undo)

The formal functions ¢; and k; emulate the effect of someone experiment-
ing with a system by using the Undo function. From a given starting state
s, ki(s) gives the state of the system after performing i times Undo and g;(s)
gives the projected state, that is the state of the underlying system without
Undo.

Proposition 7.4 Given the function k; above introduced, the two following
properties hold:

(1) kip1(s) = ki(doit®(s, Undo)); i P7

(2) Vi, s} is fixed point for k;. P8

138CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDOQO

Proof: For both the properties, P7 and P8, the proof is done by induction.

P7
e base case: 1 = 0.
Left
By definition of k;, we have that:
ki(s) = doit®(ko(s), Undo) = doit®(s, Undo).
Right
By definition of kg, we have that
ko(doit® (s, Undo)) = doit®(s, Undo)
so the left-hand side and right-hand side are equal.

oo Assume that k;y,(s) = k;(doit’(s, Undo)), prove that
kiya(s) = kip1(doit (s, ndo))
Left
By definition of &;, we have that
kiyo(doitb(s, Undo)) = doitb(k;y(s), Undo).
By applying induction to the argument of the doit®, we have that:
= doit®(k;(doit® (s, Undo)), Undo).
By definition of k;, we have that:
kiv1(doitb(s, Undo)) = doit®(k;(doit® (s, Undo)), Undo)
so the left-hand side and right-hand side are equal.

ar7

P8
To prove that Vi. s is fixed point for k;, means to prove that Vi, k;(s8) = sb.
¢ base case, 1 = 0.

By definition of ky. we have that ko(s}) = sb.

ee Assume that A;(s8) = s, prove that kip1(s8) = s8.

By definition of k;. we have that

kip1(sh) = doit®(k;(s8), Undo).

By applying inductive hypothesis to the argument of the doit?, the right
element of the above written equality is equal to doit® (s}, Undo). Since P? is
backtrack Undo of the PIE P, then equation E1 holds, so the last is equal
to sb.

my g

7.4. EXISTENCE OF A HOMOMORPHISM FOR PMIN 139

The k; function was introduced in order to define ¢’, but we have not
yet introduced properties regarding the function ¢’ itself. ¢’ is a function
which associates with a state s € S? a sequence of states infinite to the left.
These are the states that would be obtained by applying Undo repeatedly
to the original state s. Remember that we are only interested in reachable
states, that is those in the range of the interpretation function I®. This
means that we only want to talk about those states s € S* which are given
by the interpretation of a suitable history h € I®.

What we want to prove now. is that the infinite part of each ¢’ is given
by a sequence of any number of initial state eg This is expressed in the
following proposition:

Proposition 7.5 Given the ¢’ function, so defined

g Sh— 5
g'(s) =<....g:(s),. ... gols) >
where each g; is so defined:
gi:S"—=S
gi(s) = proj®(ki(s))
where k;(s) = $* — 5°
ko(s) = s
ki(s) = doit®(ki_y(s), Undo)

then Vs € I°(H®) 3n € N st.Yi > n g;(I°(h)) = so.

Proof: Before to start the proof, we have to do a couple of considera-
tion. First, considering that the I° function is surjectiveon I*(H?), we could
rephrase the enunciate of the proposition as follows:

VYh e H®3In e N st.Vi>n, ¢;(I°(h) = 0.

Second, if we observe such an enunciate, we can see two symbols V, one
for ¢ and the other for h. This means that we have to do two inductive
proofs, one on n an the other on i. We can choose n = length(h).Note,
we do not claim that length(h) is the minimal n, just that it satisfies the
conditions for Proposition 7.5. We are going to start the proof working on
i.

Since ¢;(7 (/z)) = proj®(k:(I°(1))), then, for the conservativeness of state, if
k:(I°(R)) = sb, we have g;(I8(h)) = proj®(s) = so and the proof is done. So
we have to work on k;(I°(h)). :

Induction on i

140CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

Given an h € H?, let n = length(h). We will assume that k, (I*(h)) = s
(this will be proved below by induction on n). Given this assumption, we
shall prove that V i > n ,k;(I®(h)) = s§. In fact, we will prove that given
the choice n = Zenth(h) we have the stronger result that:

Vi > n, k;(I%(h)) = sb.

It is sufficient to prove this as g;(I°(h)) = projb(k (Ib(h,))), and so,
because of the consexvatlveness of state, if k;(J ()} = s§ we also have
gi(I8(R)) = proj®(sl) = so and the proof is done.

e base case, ¢ = n. It is given by definition.

ee General case.
Assume that &;(/°(h)) = s§. Prove that k;y1(I%(h)) = sb.
By definition of &;, we have that

kipr (I°(h)) = doit®(k;(1°(h)), Undo)

By applying the inductive hypothesis to the argument of the doit?, we
have :

doit® (k;(I°(h)). Undo) = doit®(s}, Undo)

which is equal to s} since equation E4 holds.

Induction on h
Let n = lenglh(h) prove that Yh € H® k,(I%(h)) = s§.

¢ base case h =<>
Since n = length(h). if h =<>, then in the base case we have that n = 0.
So we have to prove that kg(7°(<>)) = sb.

By definition of A;. we have that:
ko(1°(<>)) = ho(sd) = 4
ee Assume that b, (I°(h)) = s}, prove that k.1 (I°(h ~ ¢)) = sb.

Note that, by increasing the length of &, from A to A —~ ¢, also n in-
creases from n to n + 1. Moreover, since for Theorem 7.1 (existence of
a homomorphism for P™%*) we have that I°(h) = Ib(nat(effsp(h))), and
nat(eff s, (h}) € I C I1°, it is sufficient to do the proof Vi € H, so we can
don’t consider the case in which ¢ = Undo.

By applying property PT of Proposition 7.4, we have that

ka1 (I°(h = ¢)) = kp(doit®(I*(h ~ ¢), Undo))

7.5. EXISTENCE OF A HOMOMORPHISM FOR PMIN 141

:/

min
H

&/ | proj®

eff

min
H— 1 »§

Figure 7.7: Encapsulation of the minimal PIE and of a backtrack undo of
the same original PIE P. ’

Since P is monotone, we can express the doit® in terms of the I and,
since equation E1 holds, we have:

kn(doitb(I°(h ~ ¢), Undo)) = k,(I°(R))
By applying inductive hypothesis. we have: k,(I°(h)) = 3.

aao

7.5 Existence of a homomorphism for P"™"

Besides the relationship between the set of states of P™2% and any backtrack
Undo P, we could also find a similar relationship between the set of states
of any backtrack Undo P° and P™", both of them backtrack Undo of the
same PIE P. The meaning of such relationship is that S™" represents the
“smallest™ set of states which still allows the user to perform backtrack Undo.
In some sense, we can see S™™ as a lower bound of the set of states of any

142CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

effsp DIOj

Y I Y
H

Figure 7.8: The homomorphism between the minimal PIE and a backtrack
undo of the same original PIE P.

backtrack Undo. We cannot have less information (in sense of reachable
states) than §™, The above mentioned relationship is formalized in the
following theorem:

Theorem 7.2 (liven a PIE P and the PIE P™" both of them backtrack
{Indo of the same original PIE P, then there exists a homomorphism g,
g:Sb— S™n such that the diagram of Figure 7.7 commutes.

Proof: Considering the definition of P™" we can redraw the diagram
of Figure 7.7 as in Figure 7.8. The last commutes if it commutes for any
path starting from the source node H® and arriving to the target node S.
This means that we have to prove that the square and both the triangles
commute. Since P™™ is a backtrack Undo of P, then the square commutes.
Now, we can redraw the two triangles into the square of Figure 7.9. Such
a square, without the ¢ function, commutes because, due to the fact that
both P™™ and Pt are backtrack Undo of the same PIE P, we have that
Vh € H® e proj™n(I™™(h)) = I(eff,(h)) = projb(Ib(R)). Following the
same reasoning as in the case of the existence of a homomorphis between
Sma and S°, when we add the ¢ function, it is sufficient to prove the com-
mutativity only of the upper-left triangle, that is we have to prove that

7.5. EXISTENCE OF A HOMOMORPHISM FOR PMIN 143

U

> S

ga

min projb

Y \;
S > S

. MiIn

proj

Figure 7.9: The 0-morphism g.

Yh € Hb, I™"(h) = g(I°(h)). Similarly for P™%% the g function represents

a 0 — morphism, this time between P® and P™". We choose our g function
as follows: ¢ : S® — S such that

I : brrrd
gls) = { i;’l)(g = i)ftﬁeer\\{is(eﬂ)

Note that the second part of the definition covers unreachable states. It is
purely to make the function g total and the value <> is arbitrary.
In Theorem 7.1 we proved that for any P® backtrack Undo of of a PIE
P, it is possible to find a homomorphism between $™%% and S®. We proved
this by introducing the nat function, nat : H — H°, which is the right in-
verse of the eff,. Since P® may be any backtrack Undo of the same PIE
P, then there exists a homomorphism also from S™** to S™". By applying
Theorem 7.1 to P? and P™™ respectively, we have the two homomorphisms
I* o nat (for P?), and I™" o nat (for P™") such that the diagram of Fig-
ure 7.10 commutes. Considering that nat is the natural injection of H in
H®, and that it is the identity on H C H®, we can restrict our application
domain to any h € H instead of If%. So, our thesis becomes to prove that
Yh' € H, g(I’(nat(h'))) = I (nat(h')) '
that is Yh € H C H®, g(I°(h)) = I (h).
Since Vs € I*(H?), g(s) = strip(g’(s)) and
Yh € Hb I™n(h) = strip(J’(h)), in order to prove that Yh € H C
H®, g(I%(h)) = I™(h) it is sufficient to prove that
Yh € H, ¢'(I*(h)) = I'(h). :

144CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

I Imm
| \effsp proj
|
id |
!
|
|
|

Figure 7.10: Another diagram of the 0-morphism g.

Moreover, since

g =< gilI°(R))s s g1 (T2(R)), go(10(R)) >
I (h) =< ...,0; (/z) vy ®1(h), do(h) >;
éi(h) = I(chopi(c[f g, (),

we need to prove that Vi,Vh € H, g;(I%(h)) = ¢:(h).
Let us to do some other transformation before to start the inductive
proof. Since eff, is the identity on H, then I(chopi(eff s,(h)) = I(chopi(h)).
Furthermore, by definition of g;, we have that g;(1°(h)) = proj®(k;(I8(h))).
So, we have to prove that:

projb(k;(18(R))) = T(chop;(h)).

The proof is done by applying multiple induction, mathematical induc-
tion on ¢ and structural induction on h. We have two base cases (one in
which h» =<> and ¢ is whatever, the other in which 7 = 0 and & is what-
ever) and a general one (in which, fixed any ¢ and fixed any h for which the
hypothesis hold, we have to prove that it holds also for i + 1 and h ~ ¢). If
we represent in a Cartesian plane the application domain of the theorem’s
thesis, we can label one axis with ¢ and the other with h, then the two base

7.5. EXISTENCE OF A HOMOMORPHISM FOR PMIN 145

cases correspond to the proof of the thesis along the axes, while the general
case corresponds to prove it in the first quadrant of such a plane, moving
along any diagonal.

Now we can start the proof.

e First base case, h =<>, Vi.
We have to prove that proj®(k;(1°(<>))) = I(chop;(<>)).

Left By definition of I°(h), we have that
prog®(ki(I1°(<>))) = proj®(ki(sf))
By applying property PS8, since s is fixed point for k;, we have that:
prof?(ki(s3)) = projb(s})
which is equal to sg by applying cbxmerva.tiven.ess of the state.
Right By definition of chop;, we have that
I{chop;(<>)) = I{<>)

which is equal to sg by definition of 7. So left-hand side and right-hand side
are equal.

oo Second base case, 1 = 0, Vh:
We have to prove that proj®(ko(I°(h))) = I{chopo(h)).
Left By definition of &y we have that

proj®(ko(I°(h))) = proj®((I*(h))
By applving condition C1 of the encapsulation, we have that

proj*((I'(h)) = I(eff (1))

which is equal to I(h) because ¢ff, is the identity on H.

sp
Right

By definition of chopg we have that I (chopg(h)) = I(h).
So left-hand side and right-hand side are equal.

146CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDOQO

ws!
[

Figure 7.11: Two 0-morphism f and g.

o o o General case. Assume that proj®(k;(I%(h))) = I(chop;(h)),
prove that proj®(kiy, (I°(h ~ ¢))) = I(chopiy1(h —~ c)).

Left Since P’ is monotone, we can express the the interpretation function in
terms of the doit?, that is:

prof(kigs (1°(h ~ €))) = proj®(ki1 (doit?(I(h), c)))
By applying property PT of Proposition 7.4, we have that:
proj®(kipi(doit’(1(h), ¢))) = proj®(ki(doit®(doit®(I(h), c), Undo)))

The last, by equation E1, is equal to proj®(k;(I°(h))). Now, by applying
inductive hypothesis, we have:

projt(ki(1°(h))) = I(chopi(h))

Right
By definition of chop; we have that:

I(chopipi(h — ¢)) = I(chop;(h))

So the left-hand side and right-hand side are equal.

7.6. CATEGORICAL REPRESENTATION OF BACKTRACK UNDOQ147

i
w

Figure 7.12: Composition of two 0-morphism.

7.6 Categorical representation of backtrack Undo

The 0-morphisms between P"* and any P® and between any P°® and
P™in establish a kind of partial order starting from the richer set $™%®
and arriving to the “smaller” set $™", The graphical representation of such
homomorphisms with arrows suggests us that the class of all the backtrack
Undo of the same PIE P may be a category under 0-morphism, while the
partial order suggest us that P and P™™" may be respectively the initial
and terminal objects in such a category. In order to prove these “sugges-
tions”, we need to use some theorems and lemmas that we are going to
introduce. We start with the following Lemma:

Lemma 7.4 (Composition of 0-morphisms) The composition of two 0-
morphisms between PIE is still a O-morphism.,

Proof: Consider two PlEs Pl =< P I, Ey >, P2 =< P, I, Ey >
and the two O-morphisms f : £} — Ey and ¢ : By — E3 such that the
two diagrams of Figure 7.11 commute. In order to prove that the diagram
of Figure 7.12, which represents the composition of the two O-morphism
commutes, we have to prove that Vo € P, I3(z) = ¢g(f([1{z))).

The right-hand side of this equation. by using the commutativity of the left-

148CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDQO

Figure 7.13: Uniqueness of 0-morphism between PIE on the reachable effects.

hand side diagram of Figure 7.11, is equal to g(I3(z)), which, by using the
commutativity of the other diagram of Figure 7.11, is equal to 3(z).

aa

Lemma 7.5 (Uniqueness of 0-morphisms). Two 0-morphisms between
PIE are unique on the reachable effects.

Proof: Consider the two PlEs Pl =< P, I1, Ey > ,P2 =< P, I, E; > and
the two 0-morphisms f, f': By — E,. We want to prove that f and f’ are
coincident on the reachable effects. Since f, f' are O0-morphisms, then the
diagram of Figure 7.13 commutes, that is fo I} = Iz = f' o I;. This means
that Vp € P, f(1(p)) = f'(11(p)), that is Ve € Ii(p), f(e) = f'(e), which
implies that f = f' on the range of I,.

aa

Considering the properties of 0-morphisms introduced with the two previ-
ous Lemmas, Theorem 7.1 and Theorem 7.2 on the existence of 0-morphisms
between backtrack Undo PIEs, we can enunciate two theorems (one for
Pmar and the other for P™™) in which the characteristics of maximal-
ity/minimality are expressed in terms of existence and unicity of 0-morphisms
between PlLs:

Theorem 7.3 (Maximality of P™%*) P™e% is mazimal in the class of the
backirack Undo of the same PIE P, in the sense that, given any backtrack
Utido P? for P, there exists a unique O-morphism from P™% to Pb,

7.6. CATEGORICAL REPRESENTATION OF BACKTRACK UNDO149

Proof: The existence of such 0-morphism is given by Theorem 7.1; the
uniqueness is ensured by Lemma 7.4.

oa

Theorem 7.4 (Minimality of P™") P™" is minimal in the class of the
backtrack Undo of the same PIE T, in the sense that, given any backtrack
Undo P for P, there exists a unique O-morphism from Pb to P™" up to
equivalence on the reachable ¢ffects.

Proof: The existence of such 0-morphism is given by Theorem 7.2; the
uniqueness is ensured by Lemma 7.4.

aa

The successive step is to represent the characteristics of maximality /minimality
in terms of category. In order to do this, we have to introduce the definitions
of graph and category [77, 7).

Definition 7.1 (Graph) 4 Graph G is a quadruple G = < N,E,s,t >
where N is a cluss of nodes, E is a class of edges, and s,t are two mappings
s, t,: E— N | called source and target respectively, such that

VieE, fia—=b, a,beN, s(fi=aandt(f)=0.

Definition 7.2 4 Category C is a triple C = < G., -0 ., id_ > where G. is a
graph G, =< O, A, s, t > in which the nodes are called objects and the edges
are called arrows: and _o _ and id_ are the two following mappings '
1) composition —o_: A x 4 — 4

2)id-: O = A

where the composition is defined for any pair of arrows f : a — b and
g:b— ¢, giving a result go f 1 a — c. id_is defined Yo € O giving an arrow
id, 1 0 — 0. and the following properties hold:

a) (hoglof=ho(go f) wherch:c—d;

b) foid, = f=1idyo f.

In the following, we are going to introduce the definition of initial and
terminal object in a category. We want to prove that the class of all the
backtrack Undo of the same PIE P is a category and that P™%% and P™" are
the initial and terminal object respectively. The meaning of this theorem is
that, even if we cannot know everything on the states, due to the fact the

150CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

interaction is non-deterministic (non-determinism also due to Undo), wé can
try to “approximate” the set of states with a “bigger” and “smaller” set.
We cannot say anything on the relationships between two general backtrack
Undo of the same original PIE P , but, for any of them, we can find a kind
of upper and lower bound.

Definition 7.3 (Initial object) An initial object in a category is an object
a, such that for any object b, there is a unique arrow f :a — b.

Definition 7.4 (Terminal object) A terminal object in a category is an
object b, such that for any object a, there is a unique arrow g : a — b.

Theorem 7.5 The cluss of all the backtrack Undo of the same PIE P forms
a category under O-morphism, the initial and terminal objects of which are
respectively P™* and P™".

Proof: In order to prove that the class of all the backtrack Undo of the
same PIE P is a category under 0-morphism, we have to:

(i) define a graph G. =< O, 4, s,t >;
(ii) define the mapping composition;
(iii) define the mapping id_;
(iv) prove the associativity [or composition;
(v) prove the i,clcnt.it‘\' for composition.

We start by defining the graph G. =< O, A, s,t > :
(1)

e O = the class of P? backtrack Undo of the same original PIE P;
e A = equivalence classes of 0-morphisms, that is an arrow is an equivalence

class [f] under the following equivalence:

given f: PIEy — PIE,, f': PIE, — PIFE,, then
f=fif flz)=f(2). Va € range(h);

e souice and target mappings s,t are so defined:
Vf:PIE), — PIFE,, then s([f]) = PIE, t([f]) = PIE,.

7.6. CATEGORICAL REPRESENTATION OF BACKTRACK UNDO151

(ii) Given the O0-morphisms f : PIE; — PIE,, g : PIE; — PIFE5 and the
composition go f : PIE] — PIE3, we define the composition of arrows as

lg]o[f]=1[g° f]-

Now we have to prove that such a definition is well formed, thatisif ¢’ = ¢
and f' = f,theng’o ff=ygo f.

Since ¢’ = ¢ and f' = f, then ¢’ and f’ are both O-morphisms. For
Lemma 7.4, the composition of 0-morphism is still a 0-morphism, so ¢’ o f’
is a O-morphism from PIE; to PIE5. Moreover, by applying Lemma 7.5
(uniqueness of 0-morphism), we have that g’o f' =go f.

O (i)

(iii) Now we can define the identity:

Given any PIE € O, we define idprgp = [idg].

Clearly, idg forms a O-morphisin, so idprg is an arrow with the given PIE
as source and target.

O(iid)

(iv) In order to prove the associativity for composition, we have to prove
that

[Ale (lglo [f]) = ([h] o lg]) o [f1.

Left

[Alo(lglof]) = [hlolgofi=Tholgo fll=[(hog)e f]

([rlofgl)o [fl = ((hogl)o[/]

so the left-hand side and right hand side are equal.

C(w)

(v) Given [f] : PIEy — PILE;.in order to prove the identity for composition,
we have to prove that,

[fleidprp, =[f] = idp1E, o [f]-

Left

(floidpre, = [flolidprs,] = [foidprr,] = [f]

Right

idprg, o [f] = lidprg,) o [f] = [idpir, o f] ="[f] so the left-hand side and
right hand side are equal.

152CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO
O(v)

To finish the proof of the theorem, we have to prove that P™%% is the
initial object and P™" is the terminal object. Because of Theorem 7.1,
YP? ¢ O, 3 O0-morphism hst. h :P™2® —Pb Such 0-morphism is unique
for Lemma 7.5. Therefore there is a unique arrow [h] :P™* —P?, that is
Pmer is initial. '

Because of Theorem 7.2, YP* € O 3 0-morphism A'st. h : P® — Pmin yp
to equivalence on reachable states. Such 0-morphism is unique for Lemma 7.5.
Therefore there is a unique arrow [i] :P® —P™" that is P™" is terminal.

0a

Corollary 7.1 P™% qnd P™" qre the unique mazimal and minimal PIE
in the category of the backtrack Undo of P.

Proof: For Theorem 7.1 P™ is maximal; for Theorem 7.2 P™™ is minimal;
for Theorem 7.5 P™% and P™" are respectively the initial and terminal
element in the category of the backtrack Undo of the same original PIE P.
By definition of initial and terminal element, they are unique in the category.

oo

In Theroem 7.1 and Theorem 7.2, we established that P™2% and P™" are
a kind of upper and lower bound for any backtrack Undoe P, in the sense that
homomorphisms exist to and from the sets of reachable effects. Moreover,
Theorem 7.5 shows that P™¢¢ and P™" are the unique initial and terminal
PIE in the category of the backtrack Undo of the same original PIE P, so
they are in fact the greatest lower bound and lowest upper bound. This
means that for any PIE PP backtrack Undo of P, we cannot have more
information than P™* nor less than P™n

7.7 Concluding discussion

At the end of the last Section, we said that for any PIE P? backtrack Undo
of P, we cannot have more information than P™%% nor less than P™". But
we have not yet explained the meaning of these theorems within specific ap-
plications software. To do this, we are going to explain, also with examples,
the main characteristic of P™4 and P™n,

-

7.7. CONCLUDING DISCUSSION 153

In P™?, the set of states is composed by sequences of states, that is
to any history provided as input a sequence of states corresponds. All the
reached states are stored, besides the repetition of the initial state at the
beginning of the sequence. It would be useless to store also such a repetition,
because, by performing Undo at the initial state, the last would not change.
This kind of system allows the user to only perceive the change of state,
but he has no information on how such a state has been reached. The Undo
function in minimal systems is simply given by a button or a menu item
called Undo, but no information on the past actions is given.

Conversely, in P, all the action history is stored. At any state, the
user can have information on all the performed action. The most common
representation of such information is by a list.

If we look at real systems they often do not follow an undo policy con-
sistently throughout. However, given these limits, we can see systems which
examplify minimal or maximal undo behaviour:

An example of maximal system is given by Word 6. As we discussed
in Chapter 3, we can consider its undo modes, (phases of using undos and
redos), as a single undo(n) command once the undo mode is complete. At
this level of abstraction the Undo mechanism is a pure backtrack Undo. If
we the consider only the list of actions linked to the Undo icon, we have a
maximal representation of the backtrack Undo.

Although we know of no example of a minimal backtrack undo editor
(perhaps because it would be too confusing to use), Emacs exemplifies this
style of system. In Emacs there is a menu item {ndo or Undo more, but
there is no visualisation of the past actions or the position in the history.
Actually, Emacs has and Undo mechanism which is neither a pure backtrack
nor a flip 'ndo. In fact, any time the user performs Undo, the reached state
is not exactly the previous one but an its copy, so the equivalence is not
strong. Moreover, the behaviour is not as the flip Undo, since the Undo
of the Undo is not used as the Redo [unction. The behaviour of the Undo
mechanism in Emacs is a kind of backtrack, but not the pure one. However,
its representation is minimal, whithout any information on the past states,
so that the user can get lost while interacting.

From the above analysis, the meaning of the theorems of homorphisms is
obvious: interacting with maximal systems, any user could have more infor-
mation on the system state, and could feel more in control of his dialogue.
For this reason, the characteristic of maximality is very important, in order
to increase the usability of an application software. During the develop-
ing phase of an application software, usually the designer chooses the kind

154CHAPTER 7. UPPER AND LOWER BOUND OF BACKTRACK UNDO

of Undo that has to be implemented. Such a choice is done as a balance
among the aim of the application, the user needs, the implementing effort,
the cost (in sense of the necessary memory), etc. However, before choosing
the the kind of Undo, the designer cannot leave out of consideration the
internal structure of the Undo mechanism. By applying formal approaches,
behaviour and properties of different Undo mechanism are described and the
designers should use such information in order to choose the most suitable
{Undo mechanism, so allowing an easy and fruitful interaction.

Conclusions

Many users when interacting with computers make mistakes which must be
menaged and, possibly, eliminated. For this purpose, within HCI, recovery
functions have been introduced. One of such function is Undo.

In this thesis, the Undo scope has been analysed. Such an analysis has
been performed at three levels, first by describing different recovery func-
tions; then by exploring the kinds of Undo mechanisms; finally, by formally
characterising the behaviour of a class of Undo mechanism, the backtrack
Undo.

In the first case, depending on the interaction level, we subdivided all the
recovery function in three classes: the ordinary recovery functions, available
if using reactive systems; the implicit undo, available if interacting with the
operating system; and the explicit undo (Undo), available when interacting
with an application software. Actually, the three classes do not represent a
partition of recovery functions; in fact, at the application level, a user can
employ both explicit and implicit undo, while at the file level a user can
employ implicit undo or any ordinary recovery function. Moreover, it is also
possible to perform any ordinary recovery function at the application level,
since, by applving some system functions, the working environment may be
changed, moving from the application level to the file one, in which any
ordinary recovery function may be used. This fact suggested the following
hierarchy: RS C HOSI C HAI, where RS indicates reactive systems,
HOST indicates human-operating system interaction, while H Al indicates
human-application interaction. The inclusions are based on the availability
of recovery functions: the inner set (HAI) is the “richest”, the outer one
(RS} is the “poorest”. In fact, in H Al any kind of recovery function may be
applied, explicit undo, implicit undo and ordinary recovery functions, while
in RS only ordinary recovery functions are available.

A breadth analysis of the Undo scope showed that there is more than one
kind of Undo. Basically, we can distinguish all the Undo mechanisms into

155

156 Conclusions

two classes, one in which Undo is self-applicable, i.e. the effect of an Undo
may be deleted by applying another Undo, and the other one in which Undo
is not self-applicable, so that Undo of Undo may be used as a backtrack tool.

A taxonomy of different kinds of Undo has been proposed. Such a tax-
onomy considers the repetition of Undo (if Undo of Undo is allowed or not)
and its granularity (if an Undo cancels only one action or a block of ac-
tions). A similar analysis has also been done adding the Redo function, and
a taxonomy of Undo - Redo mechanism has been proposed.

The choice of the kind of Undo to develop a particular application is
usually done by the designer which keeps a balance on the aim of the ap-
plication, the user needs, the implementing effort, the cost (in sense of the
necessary memory), etc. However, before choosing the the kind of Undo,
the designer cannot leave out the internal structure of the Undo méchanism.
Among the different Undo mechanisms we chose the backtrack Undo and
deep analysis on it has been developed. A formal method, the PIE model,
has been applied, in order to describe some properties of such a class of
systems.

After giving the definition of conservative encapsulation (which expresses
the fact that, given a PIIZ P without Undo and its augmented system en-
riched with Undo , the system without Undo is still inside the augmented
one), the definition of behavioural equivalence has been given and we proved
that all the systems which are backtrack Undo of the same original PIE
P are behaviourally equivalent. This means that, from the user’s point of
view, they have the same behaviour. ‘

Since such an equivalence is in terms of the effective history, we do not
have much ihformation on the sets of states. However, in some sense, we can
try to limit the set of states of any backtrack Undo, finding a suitable upper
bound and lower bound. To this aim, we introduced two PIEs, P™%% and
Pmin which are the backtrack Undo of the same original PIE P, with the
“biggest” and “smallest” set of states, respectively.

We proved that for any backtrack Undo PP of the same PIE P, there
exists a homomorphism from the set of states of P”%% to the oné of Pb and,
similarly, there exists a homomorphism from the set of states of P? to the
one of P, Moreover, we proved that the class of all the backtrack Undo of
the same original system P is a category, whose initial and terminal elements
are exactly P™a* and P™", Since P™%% and P™™ are initial and terminal
objects in the category, then the two above mentioned homomorphisms are
0-morphisms between 7™ and P° |, and between P’ and P™™" , and also
that such 0- morphisms are unique. The consequence is that P™** and

Conclusions 157

P™in are the lowest upper bound and the greatest lower bound respectively.

The meaning of this theorem is that we cannot have more “information”
than P™%% neither less than P™". The maximal system allows the user to
have as most information as possible on the system state, so reducing non-
determinism and allowing him to feel more in control of his dialogue. For
this reason, during the development of an application software, the designers
should also take into account the properties of interactive systems described
by using some formal methods. In this way, the choice of a suitable Undo
mechanism can increase the usability of the application software, allowing
an easy and fruitful interaction.

An obvious extension of this work is to formally describe the behaviour

of the flip Undo (for which the Undo of the Undo is the Redo function) and

also to. prove for this class of systems the theorems of homomorphisms.

Moreover, an analysis of the algebraic properties for systems with sin-
gle/multi step Undo / Redo may be done.

Considering the similarity between undo and history mechanisms, back-
track Undo properties are also u%eful to analyse bIO\\ sing for different inter-
action histories. : :

A successive step may also be to enlalge this clmcussxon to the case of
the multi-user environments. Some work on the formalisation of Undo in
collaboratne work has already been done. However, it would be better to
express properties of such systems with the same formal model. In this way
a comprehensive view of interactive systems from the point of view of their
undo mechanisms may be-obtained.

Bibliography

[1] G.D. Abowd. Formal Aspects of Human-Computer Interaction. Techni-
cal monograph PRG-97, Department of Computer Science, University
of Oxford, 1991.

[2] G.D. Abowd and R. Beale. Users, systems and interfaces: A unifying
framework for interaction. In D. Diaper and N. Hammond, editors,
Proc. of HCI'91, People and Computers VI, pages 73-87. Cambridge
University Press, 1991.

[3] G.D. Abowd and A.J. Dix. Giving undo attention. Interacting with
Computers, 4(3):317-342, 1992.

[4] J.E. Archer, R. Conway, and F.B. Schneider. User recovery and reversal
in interactive systems. ACM Transactions on Programming Languages
and Systems, (6):1-19, 1984.

[5] A.N. Badre. Methodological Issues for Interface Design: a User-
Centered Approach. Research Report DI/DS - 93/01, University of
Rome, ‘La Sapienza’, 1993.

[6] R.W. Bailey. Human Performance Engineering: a Guide for System
Designers. Prentice Hall, 1982.

[7] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, 1995.

[8] J.D. Barrow. The world within the world. Oxford University press,
1988.

[9] R. Bastide and P. Palanque. Petri Nets with objects for the design,
validation and prototyping of user-driven interfaces. In Proceedings IN-
TERACT’90, pages 625-631. Elsevier Science Publisher B.V., 1990.

159

160 BIBLIOGRAPHY

[10] R. Bastide and P. Palanque. Petri Net based design of User-driven In-
terfaces using the Interactive Cooperative Objects Formalism. In F. Pa-
ternd, editor, Interactive Systems: Design, Specification and Verifica-
tion, pages 383-400. Springer Verlag, 1994.

[11] C. Batini, Cerry, and Navathe. Conceptual Database Design. Benjamin
Cunnings, 1992.

[12] T. Berlage. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Transactions on Human Computer
Interaction, (1):269-294, 1994.

[13] S. Bovair, D.E. Kieras, and P.G. Polson. The acquisition and perfor-
mance of text-editing skill: a cognitive complexity analysis. Human-
Computer Interaction, 5(1):1-48, 1990.

[14] D.P. Bovet and P. Crescenzi. Teoria della complessiti computazionale.
Franco Angeli, 1991. ‘

[15] P. Brun and M. Beaudouin-Lafon. A Taxonomy and Evaluation of
Formalisms for the Specification of Interactive Systems. In G. Cockton,
S.W. Draper, and G.R.S. Weir, editors, Proc. of HCI’94, People and
Computers IX, pages 197-212. Cambridge University Press, 1994.

[16] V. Bush. As we may think. The Atlantic Monthly, 176(July):101-108,
1945.

[17] S.K. Card, T.P. Moran, and A. Newell. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum, 1983.

[18] J.K. Carroll, R.L. Mack, and W.A. Kellogg. Interface Metaphors and
User Interface Design. In Handbook of Human-Computer Interaction,
pages 67-85. North-Holland, 1988,

[19] S.K. Chang, M.F. Costabile, and S. Levialdi. Modeling Users in an
Adaptative Visual Interface for Database Systems. Journal of Visual
Languages and Computing, (4):143-159, 1993.

[20] S.K. Chang, M.F Costabile, and S. Levialdi. Reality Bites - Progressive
Querying and Result Visualization in logical and VR Spaces. In IEEE
Symposium on Visual Languages, pages 100-109. IEEE Computer So-
ciety Press, 1994.

BIBLIOGRAPHY 161

(21]

[22]

[28)

I. Cole, M.W Lansdale, and B. Christie. Dialogue design guidelines. In
Human Factors of Information Technology in the Office, pages 212-241.
Wiley, 1985.

M_.F. Costabile and R. Mancini. A Methodological Framework to evalu-
ate the VENUS System in a Real environment. VENUS Esprit Project
6398, External Deliverable DI-10/08-010, Gesi, Gestione Sistemi per
I'Informatica, 1994.

J. Coutaz. PAC, an object oriented model for dialogue design. In
H.J. Bullinger and B. Shackel, editors, Human-Computer Interaction,
INTERACT 87, pages 431-436. Elsevier Science Publisher B.V., 1987.

A.M. Dearden and M.D. Harrison. Modelling Interaction Properties for
Interactive Case Memories. In F. Paternd, editor, Interactive Systems:
Design, Specification and Verification, pages 301-316. Springer Verlag,
1994. '

A. Dix. Formal methods. In Perspective in HCI -Diverse Approaches,
chapter 2, pages 9-43. ACM Press, 1995.

A. Dix and M. Harrison. Formalising Models of Interaction in the Design
of a Display Editor. In H.J. Bullinger and B. Shackel, editors, Human-
Computer Interaction, INTERACT’87, pages 409-414. Elsevier Science
Publisher B.V., 1987.

A.J. Dix and C. Runciman. Abstract models of interactive systems. In
P. Johnson and S. Cook, editors, People and Computers: Designing the
Interface P Proceedings of HCI'85, pages 13-22. Cambridge University
Press, 1985.

A.J. Dix. Formal Methods and Interactive Systems: Principles and
Practice. D.phil. thesis, ycst 88/08, Department of Computer Science,
University of York, 1987.

[29] A.J. Dix. Formal Methods for Interactive Systems. Academic Press,

1991.

[30] A.J. Dix. Que Sera Sera - The Problem of Future Perfect in Open and

Cooperative Systems. In G. Cockton, S.W. Draper, and G.R.S. Weir,
editors, Proc. of HCI'94, People and Computers IX, pages 397-408.
Cambridge University Press, 1994.

162 BIBLIOGRAPHY

[31] A.J. Dix. Closing the Loop: Modelling action, perception arid infor-
mation. In Proc. of the Int. Workshop on Advanced Visual Interfaces
AVI’96, pages 20-28. ACM Press, 1996.

[32] A.J. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Inter-
action. Prentice Hall, 1993.

[33] A.J. Dix, J. Finlay, and J. Hassell. Environments for Cooperating
Agents: Designing the Interface as a Medium. In CSCW and Artifi-
cial Intelligence, pages 23-37. Springer Verlag, 1994.

[34] A.J. Dix, R. Mancini, and S. Levialdi. Action, Communication and
History. to appear in Proc. of CHI'97, Technical Notes.

[35] A.J. Dix, R. Mancini, and S. Levialdi. Alas I have undone - Reducing
the risk of interaction? In Ancillary Proceedings of HCI’96, pages 51—
56. The British HCI Group, 1996.

[36] D. Duke, G. Faconti, M. Harrison, and F. Paterné. Unifying Views of
Interactors. In Proc. of the Int. Workshop on Advanced Visual Interfaces
AVI'96, pages 143-152. ACM Press, 1996.

[37] A.E. Fischer and F.S. Grodzinsky. The Anatomy of Programming Lan-
gquages. Prentice-Hall, Inc., 1993.

[38] M Green. A survey of Three Dialogue Models. ACM Transactions on
Graphics, 5(3):244-275, 1986.

[39] M. Harrison and A. Dix. A state model of direct n'la.ﬁipulati’on in in-
teractive systems. In Formal Methods in Human-Computer Interaction,
chapter 5, pages 129-152. Cambridge University Press, 1990.

[40] M. Harrison and H. Thimbleby, editors. Formal Methods in Human-
Computer Interaction. Cambridge University Press, 1990.

[41] ISO. ISO 9126: Software product evaluation - Quality characteristics
and guidelines for their use, 1991,

[42] 1SO. ISO DIS 9241-11: Guidelines for specifying and measuring usabil-
ity, 1993.

[43] C. Johnson. Time and the Web: Representing and Reasoning about
Temporal Properties of Interaction with Distributed Systems. In

BIBLIOGRAPHY 163

M.A.R. Kirby, A.J. Dix, and J.E. Finlay, editors, Proc. of HCI’95,
People and Computers X, pages 39-50. Cambridge University Press,
1995.

[44] M.W. Lansdale and T.C. Ormerod. Understanding Interfaces. Aca-
demic Press, 1994.

[45] G.B. Leeman. A Formal Approach to Undo Operations in Program-
ming Languages. ACM Transactions on Programming Languages and
Systems, 3(1):50-87, 1986.

[46] S. Levialdi, P. Mussio, M. Protti, and L. Tosoni. Reflection on Icons. In
IEEE Symposium on Visual Languages, pages 249-254. IEEE Computer
Society Press, 1993.

[47] H.R. Lewis and C.H. Papadimitriou. Elements of theory of computation.
Prentice-Hall, 1981. ‘

[48] J.C.R. Licklider. Man-computer symbiosis. IRE Transactions on Hu-
man Factors in Electronics HFE, 1(1):4-11, 1960.

[49] P. Linz. An Introduction to Formal Languages and Automata. D.C.
Heath and Company, 1990.

[50] L. Macaulay. Human-Computer Interaction for Software Designers. In-
ternational Thompson Computer Press, 1995.

[51] M. Macleod. An introduction to Usability Evaluation. NPL Report
DICT 102/92, National Physical Laboratory, UK, 1971.

[52] M. Macleod. An Introduction to Usability Evaluation. NPL Report
DICT 102/92, National Physical Laboratory, UIX, 1992.

(53] F. Maddix. Human-Computer- Interaction, Theory and Practice. Ellis
Horwood Limited, 1990.

[54] J. Maissel, M. Macleod, A. Dillon, C. Thomas, R. Rengger, M. Maguire,
M. Sweeney, and R. Corocran. Context guidelines handbooks, Version

2.1, 1993.

[55] R. Mancini. Interacting with a Visual Editor. In Proc. of the Int.
Workshop on Advanced Visual Interfaces AVI'96, pages 125-131. ACM
Press, 1996.

164 BIBLIOGRAPHY

[56] R. Mancini, A. Dix, and S. Levialdi. Formal and Informal Definitions
of Undo. Research Report RR9611, School of Computing and Mathe-
matics, University of Huddersfield, UK, 1996.

[57] M. De Marsico and R. Mancini. Usability through Iconic Interfaces. In
Proc. of OZCHI’93, pages 264-266. CHI Special interest Group of the
Ergonomics Society of Australia, 1993.

[58] R.B. Miller. Human ease of use criteria and their trade-offs. IBM Report
TR00.2185, Poughkeepsie, NY:IBM Corporation, 1971.

[59] R. Milner. Communication and concurrency. Prentice Hall, 1988.

[60] R.N. Moll, M.A. Arbib, and A.J. Kfoury. An Introduction to Formal
Language Theory. Springer-Verlag, 1987.

[61] S.J. Mountford. What can Users tell about User Interface? In Proc. of
the Int. Workshop on Advanced Visual Interfaces AVI’92, pages 103
107. World Scientific Press, Singapore, 1992. ‘

[62] B. A. Myers and D. S. Kosbie. Reusable hierarchical command ob-
jects. In Proceedings of C'HI 96, Vancouver, BC, Canada, pages 260~
267. ACM Press, 1996.

[63] J. Nielsen, editor. Usability Engineering. AP Professional, 1993.

[64] D.A. Norman. Categorisation of action slips. Psychological Review,
(88):1~15, 1981.

[65] D.A. Norman. Cognitive Engineering. In D.A. Norman and S. Draper,
editors, User-Centered System Design, pages 31-62. Erlbaum, 1986.

[66] A. Monk P. Wright and M. Harrison. State, display an undo: a study
of consistency in display based interaction. Technical report, University
of York, 1992.

[67] P. Palanque and R. Bastide, editors. Proc. of the Eurographics Work-
shop on Design, Specification and Verification of Interactive Systems
’95. Springer Verlag, 1995.

[68] F. Paterno, editor. Interactive Systems: Design, Specification and Ver-
ification. Springer Verlag, 1994.

BIBLIOGRAPHY 165

[69] F. Paternd. Formal Methods for Multimodal Interactive Systems. In
Tutorial 11, HCI'96. The British HCI Group, 1996.

[70] J. Pearsall and B. Trumble, editors. The Ouzford English Reference
Dictionary. Oxford University Press, 1995.

[71] G.E. Pfaff. User Interface Management System. Springer Verlag, 1985.

[72] A. Prakash and M. J. Knister. Undoing Actions in Collaborative
Work. In CSCW’92 Sharing Perspectives, Proc. of the Conference on
Computer-Supported Collaborative Work, pages 273-280. ACM Press,
1992.

[73] J. Preece and L. Keller, editors. Human-Computer Interaction, Selected
Readings. Prentice Hall, 1990.

[74] T.V. Raman and D. Gries. Interactive Audio Documents. Journal of
Visual Languages and Computing, (7):97-108, 1996.

[75] C. Rouff. Formal Specification of User Interfaces. ACM SIGCHI Bul-
letin, 28(3):27-33, 1996.

[76] C. Runciman. From abstract models to functional prototypes. In Formal
Methods in Human-Computer Interaction, chapter 7, pages 201-232.
Cambridge University Press, 1990.

[77] D.E. Rydeheard and R.M. Burstall. Computational Category Theory.
Prentice Hall, 1988.

78
[79] F. Schile and T. Green. HCI formalisms and cognitive psychology: the
case of task-action grammars. In Formal Methods in Human-Computer

Interaction, chapter 2, pages 9-62. Cambridge University Press, 1990.

1 A. Salomaa. Formal Languages. Academic Press, 1973.

{80] B. Shackel and Richardson, editors. Human Factors for Informatics
Usability. Cambridge University Press, 1991.

(81] B. Shneiderman. The future of interactive systems and the emergence of
direct manipulation. Behaviour and Information Technology, 1(3):237-
256, 1982.

[82] A. Silberschatz and P. Galvin. Operating Systems Concepts -Fourth
Edition. Addison-Wesley, 1994,

166 BIBLIOGRAPHY

[83] R. M. Stallman. EMACS: The extensible, customizable self- document-
ing display editor. ACM SIGPLAN Notices, 16(6):147-156, 1981.

[84] H.W. Thimbleby. User Interfuce Design. Addison Wesley, 1990.

(85] S. Treu. User Interface Design - A Structured Approach. Plenum Press,
1994.

[86] J.S. Vitter. US&R: A new framework for redoing. IEEE Software,
1(4):39-52, 1984 |

[87] P. Wegner. Tradeoffs between Reasoning and Modeling. In Research Di-
rections in Concurrent Object-Oriented Programming, chapter 2, pages
- 22-41. MIT Press, 1993.

[88] Y. Yang. Undo support models. International Journal of Man-Machine
Studies, (28):457-481, 1988.

[89] R.M. Young and G.D. Abowd. Multi-Perspective Modelling of Inter-
face Design Issues: Undo in Collaborative Editor. In G. Cockton, S.W.
Draper, and G.R.S. Weir, editors, Proc. of HCI’94, People and Com-
puters IX, pages 249-260. Cambridge University Press, 1994.

