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Introd uction 

Human-Computer Interaction (HeI) is a multi-disciplinary area, since it 
involves computer science, psychology, ergonomics, .... In any of these fields, 
research has been done in order to understand and improve the interaction, 
making it as easy and fruitful as possible. Due to its nature, there is not 
a common understanding of an "interactive system", because a definition, 
eventually provided by psychologists, would not take into account all the 
aspects relevant to a computer scientist, and vice versa. In this work, we 
are going to introduce interactive systems as a su bset of the reactive ones 
[69J and then describe them in terms of their basic features: modularization, 
feedback, dialogue, usability and others. One of such feature is the Undo 
function, which allows the user to cancel the effect of his past action so 
reaching a previous state. Interactivity is not based only on the presence of 
Undo, yet no real interactive system may live v,;ithout it. Moreover, during 
the requirements analysis, which is the first step in the softfware life cycle 
[32J, usually, even users which are not computer experts, require a function 
which allows them to repa.ir an error. So Undo is not simply a feature of 
interactive systems, but it is a rea.! llser need. 

Someone could argue that Undo is a function typical not only for in­
teractive systems, but also for traditional ones. Some people consider 'any 
recovery function a kind of undo'. The fact that we disagree with this belief, 
may be due the lack of a common undeystanding on the Undo. Moreover, 
many kinds of Undo exists. Due to the relevance of this function in interac­
tive systems, we think that a better understanding is important, because the 
knowledge of this function and of its potentia.!ity gives strongly contribution 
to improve interaction making it more confident and fruitful. 

The aim of this thesis is to clarify the scope of the Undo function. Such 
a clarification is done at three levels. The first level is inside the world of 
reactive systems and recovery functions, in order to place the Undo function 
on the map of reactive systems. The second level explores different kinds of 
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2 In trod uction 

Undo with which a user can interact. The third level analyses in depth a 
specific class of Undo, the backtrack Undo. On the first two levels, we use 
a descriptive analysis in order to clarify what exactly Undo means, when it 
can be used, on which actions it operates, ... , what do we intend by Redo, 
what is the link between Undo and Redo, etc. Conversely, in the third and 
last level, we accomplish a formal analysis of a specific undo mechanism: 
the backtrack Undo. By applying the PIE model [27], we formally describe 
the behaviour of this class of systems and, after introducing the concept of 
conservative encapsulation and of behavioural equivalence, we prove some 
interesting and useful properties. 

Depending on the interaction level, we may consider the set of reactive 
systems in Computer Science as organised in ordinary reactive systems, op­
erating systems and application software. In ordinary reactive systems there 
is no interaction, but simply reaction between the entities involved in the 
communication. In both the other two cases, while working with operating 
systems and application software, interaction is present, since there is a con­
tinuous exchange of information between user and system. Moreover, th~re 
is also an immediate computer reaction to any user action, reaction which 
may be more or less explicitely represented to the user by visual and/or 
audio feedback, depending on the nature of the interaction language. The 
difference between the interaction with a.n operating system and an applica­
tion software is in the object of interest of any user action: within operating 
systems the object of interest is a file, within application software such object 
is the file content.. 

'Ve call any fUllctions which allows the user to reach a past state a re­
C01'eI'Y function. ~lorover, since, as just above mentioned, there is more 
than one kind of reactive system, we can have different kinds of recovery 
functions, depending on the reactive system itself. VVe have ordinary recov­
ery Junctions wit h reactive systems; implicit undo at the file level (implicit 
in the sense tha.t a system fu nction called Undo is not available, but it is 
possible to reach a past state using some other system functions and/or by 
direct manipulation); e:cplicit undo at the application level. At this point 
we know that we could expect to have an explicit undo only available at the 
application level. 

Undo is a very important system function, not only because it permits the 
user to repair an error, if it occurs, by cancelling the last performed action(s) 
(the plura.l indicates that Undo i11ay cancel more than one action, depending 
on the implementation), but a.lso beca.use it allows the user to handle and 
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reduce non-determinism in interaction. In HCI with non-determinism we 
mean the impossibility to perform a prediction on an object, impossibility 
due to the incomplete knowledge on the object itself. We have a double non­
determinism in interaction: one is from the system point of view, because it is 
not possible to foresee the human behaviour; the other is from the user point 
of view, because if the user has not a full knowledge on the system states and 
behaviour, his predictions may differ from what will really happen. When 
the user has not enough information on what he can do with the system, he 
combine the visual approach 'with direct manipulation and navigate through 
the system itself. In this case, the use of the Undo function, which allows 
to reach a past state, enables him to try different paths while interacting. 
Consequently, the user increases his knowledge on the system potentiaIity, 
i.e. he can handle non-determinism. t./loreover, when a user performs a 
command reaching a different state from the one he foresaw, then there is 
some inconsistency between the user and system points of view. 

By performing Undo, the user can not only repair an error, but can also 
resolve such inconsistencies and can iltcrease his knowledge on the computer 
behaviour. so reducing non-determinism. Unfortunately, Undo may also add 
non-determinism in interaction. and this happens when it is not available 
when we think it is, or when its effect is different from what we foresaw, 
that is when the user and system models of the Undo differ. Basically, such 
a difference is due to the fact that for the user. Undo is a command, and, 
as all other ordinary commands, should a.ct modifying the content of a file. 
Actually, Undo is a meta-command. since its domain of interest is the action 
history. \Ve can have two class('s of Undo systems, one for which it is self­
applicable, that is Undo is forced to belong to its domain of interest, and 
its effect may be cancelled by performing another Undo, or one for which 
it is not self-applicable, it is not possible to undo the effect of all Undo, 
enabiling it to be used as a backtrack tool. 

To order the different kinds of Undo, we provide an informal definition 
of Undo and a taxonomy of interactive systems, the last based on the Undo 
mechanisms: we consider the repetition of Undo (if Undo of Undo is or is not 
allowed) and the granula.rity (possibility to undo only the last past action or 
a block of past actions). Next, we introduce the Redo function, which is not 
simply the inverse of Undo. After providing also an informal definition for 
Redo, we explain the link and the dependencies bet\\:een Undo and Redo and 
we propose another taxonomy of interactive systems, this time also including 
the just introduced function. 
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Taxonomies are important to classify the different kinds of Undo, but 
they are not able to describe properties of different Undo mechanisms. To 
this aim, we need a formal approach. Among the different formal approaches, 
we use a black-box model, the PIE model, because we are interested in 
describing properties of the system behaviour from the user point of view, 
and to this aim a black box model seems to be the most suitable. Using 
the PIE model, we describe the behavior of the backtrack Undo. We next 
provide a definition of conservative encapsulation, which expresses the idea 
that given a system without Undo, and the augmented system enriched by 
Undo, the old system is still inside the augmented one. 

We intl'oduce a, definition of behavioural equivalence between systems, 
then proving that all systems pb which are the backtrack Undo of the same 
original PIE Pare behaviouraIIy equivalent. In such proof, we do not involve 
the set of states, since the equivalence is only in terms of the effective history. 
Nevertheless, we can say something also on the set of states; in fact,we 
define two particular PIEs, pma:r and pmin, which are the backtrack Undo 
of the same origina.1 PIE P, with the "bigger" and "smaIIest" sets of states 
respectively. We provE' that for any backtrack Undo pb of the same original 
system P, there exists a homomorphism from the set of states of pmax to 
the one of ph, and si 111 ilarly, we prove that for any backtrack Undo ph of 
the same origina.l system P, there exists a homomorphism from the set of 
states of pb to the one of pmin. The meaning of the two theorems on 
the homomorphisms is that, even if we do not have enough information on 
the set of states, in some sense we can find an upper bound and a lower 
bound. Moreover, we prove that the class of all the backtrack Undo of the 
same original system P is a category, whose initial and terminal element 
are pmax and pmin respectively. This means that not only a O-morphism 
between pma.,· and pi! , and similarly between pb and pmin exists, but also 
that such O-morphisms are unique. This means that pmax and pmin are the 
lowest upper bound ane! greatest lower bound, that is we cannot have more 
information than pma:r neither less then pmin. Since the maximal system 
a.IIows the user to know precisely the actual state and how he reached it, then 
he can reduce non-determinism and, consequently, can feel more in control 
of his dia.logue while interacting. For this reason, during the development 
of all application software, before to choose which kind of Undo has to be 
implemented, developers should take in to account also analysis provided 
by applying formal approaches, in order to increase the usability of the 
a.pplication software allowing an easy and fruitful interaction. 

This thesis is organised as follows. In Chapter 1 we introduce HCI as a 
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multi-disciplinary area and the corresponding formal methods are discussed, 
with particular refernce to the PIE model. In Chapter 2 we introduce reac­
tive and interactive systems and we describe properties of interaction lan­
guages. In Chapter 3 we discuss different kinds of recovery function, while in 
Chapter 4 we characterise non-determinism in interaction. Different kinds 
of Undo mechanisms are analysed in Chapter 5 and two taxonomies of inter­
active systems, based on the different kinds of Undo and Redo are proposed. 
In Chapter 6, using the PIE model, we highlight some formal properties of 
the class of backtrack Undo of the same original system P, and we prove 
that all the backtrack Undo of the same original system P are behaviourally 
equivalent. In Chapter 7 we introduce two PIE, pmax and pmin (having the 
"biggest" and "smallest" set of states respectively) and we prove the theo­
rem of homomorphisms from the set of states of pmax to the one of pb, and 
from the set of states of pb to the one pf pmin. Moreover, we prove that the 
class of all the backtrack Undo pb of the same original PIE P is a category 
of which pmax and pmin are the initial and terminal elements. The main 
results of this work and possible extension are described in the conclusion. 
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Chapter 1 

Human-Computer 
Interaction 

Human-Computer Interaction (HCI) is a multidisciplinary area, whose aim 
is to understand all the aspects related to the communication between a 
human and a computer in order to provide suggestions for designing usable 
interactive systems. Since the two involved partners in the communication 
are a human and a computer, the aspects of such a communication may be 
mainly analised from two different points of view, from the psychology and 
the computer science point of view. However, neither analysis from psy­
chology nor computer science is complete, since the suggestions provided by 
the phychology are informal and sometimes may not cover all the system 
functions, while suggestions provided by computer scientists may not con­
sider all the human or contextual aspects. For this reason, a combination 
of contributions from these two main research areas is important in order to 
provide guidelines for developing usable interactive systems. 

In this Chapter, after an introduction on the origins of Human-Computer 
Interaction, a psychological point of view on interaction is given, focusing 
particularly on interfaces and on usability aspects. Next, formal methods in 
interaction are introduced, giving attention to formal models for interactive 
systems. In particular, \ve discuss formal approaches to dialogue specifica­
tion and analysis, specification of individual interactive systems and generic 
models of interactive systems. Among the generic models, emphasis is given 
to the PIE model [27] and to some of its basic properties, which will be used 
in the following Chapters. 
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1.1 The origins of Hunlan-Computer Interaction 

Since the beginning of the history of computing there has been the need to 
improve the communication between a user and a machine, trying to make 
such a communication, depending on the available technology, as easy and 
comfortable as possible. 

One of the first references to an easy and fruitful utilization by a human 
of a computer is by Vannevar Bush and dates back to 1945 [16]. In his paper 
"As we may thin k", he suggested the use of a device called MEMEX: 

... A MEMEX is a device in which an individual stores all his 
books, records, and communications, and which is mechanized so 
that it may be consulted with exceeding speed and flexibility ... 

He described how the system should function, the way in which informa­
tion could be retrieved, a browser mechanism for books, different indexing 
techniques, ... His description foresaw a multimedia system for an applica­
tion of information st.orage and retrieval. Such a description represented the 
first expression for the need of a mechanical tool, to support human work, 
fast and easy to be employed by a user. Actually, sImilar systems exist but, 
considering that the first conipuiers appeared in the Fifties, in 1945 Bush's 
opinion looked as science fiction. 

Some years later, in 1960, another view of the importance of the human­
computer interaction has been offered by Licklider [48]. He referred to the 
human and the computer as two entities that should work in symbiosis. But 
the other important thing that he highlighted was the fact that a computer 
should be used not only to solve preformulated problems, hut also to solve 
problems which could arise during the computation, introducing for the first 
time the idea of a partial result.: 

... Present-day computers are designed primarily to solve pre­
formuiated problems or to process data according to predetermi­
nated procedures. The course of the computation may be condie. 
tional upon results obtained during the computation, but all the 
alternatives must be foreseen in advance ... 

The main computer features that, at the beginning of the Sixties, the 
users required, were the time-sharing of coinputers among many users and 
an electronic input-output stll-face. It was and is extremely important to 
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see what a user asks to a computer (input) and what the computer itself 
provides as answer (output). 

Going on with the years, the number of features that a human required 
from the computer increased. This is due to the fact that around the Sev­
enties, with the advent of mainframes and minicomputers, an increasing 
number of non-programmer users have been forced to insume a strong effort 
in using manuals and handbooks before being able to employ a computer. 
So good human-computer interaction started to be a real necessity, while in 
the Fifties-Sixties it was a proposal, a possibility. 

The Eighties, with the intoduction of direct manipulation paradigm [81], 
represented really a revolution in human-computer interaction. Byemploy­
ing direct manipulation, the user is not forced any more to learn, by con­
sulting manuals and handbooks, how to employ the system, but he can do it 
by simply navigating through it. }/Ioreover, in order to allow the user to feel 
more confident while interacting, different recovery functions are generally 
available, so that he can repair an error if it occurs. With the advent of 
direct manipulation, the user, his aims, goals, needs, etc, started to have 
more and more importance along the development of application software 
and human-computer interaction became a real and wide research area. 

1.2 Her as a 111lIlti-disciplinary area 

The aim of the Human-Computer Interaction (HCI) [.5:3,32, .50, 73] is to un-­
derstand the interaction between a human and a computer in all its aspects 
and to provide suggestions and guidance for designing computer systems 
which are really usable, that is which allow humans to accomplish their 
tasks in a very easy and fruitful way. The involved partners in the commu­
nication in HCI are t\vo: a human and a computer. For this reason, in order 
to express properties that an interactive system should have to increase its 
usability [.5, 80, 6:3], we need to take into account characteristics of both 
partners. In fact, systems developed only taking into account algorithmic, 
computational, implementative aspects are often not usable; conversely, the 
design of a system provided by a user could be not feasible. For this rea­
son, psychology and computer science must work together. However, also 
other disciplines playa. very important role in HCI, as linguistics, artificial 
intelligence, ergonomics, etc [6]. For this reasori, HCI is a multi-disciplinary 
area .. 
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1.3 Interaction 1110dels 

The essence of the interaction between a human and a computer is in their 
continuous exchange of information: the user establishes a goal, then pro­
vides an input, the computer provides an answer to the given input, the user 
evaluates the feedback and then he can provide another input. Since the 
computer and the human have very different characteristics, it is important 
to find a common ground in which they can communicate. Such a groulld 
is represented by the interface, through which the translation from the "hu­
man world" to the computer one (and vice versa) takes place. Anyway, such 
a translation can fail for different reasons, and the use of soine interaction 
models can help us in understanding which are the main difficulties, so that 
we can find a way to solve them. 

Different interaction models have been proposed [32]. One of the most 
influential in Hel has been the Norman's model, perhaps because it is very 
near to the intuitive idea of the essence of human-computer interaction. In 
this model, the cycle of user-input/computer-answer is analised only from 
the user point of view, and can be seen as composed of two main phases: 
execution and eva.lua.tion. These may be refined into the seven phases listed 
below [6.5]: 

(1) establishing the goal; 

(2) forming the intention; 

(3) specifying the action sequence; 

(4) executing the action; 

(.5) perceiving the system state; 

(6) interpreting the system state; 

(7) evaluating the system state with respect to the goals and intentions. 

The first three phasE'S correspond to the understanding on what the user 
has to do in oreler to reach his aim, that is the understanding on which 
task he has to perform and how to accomplish it by employing the com­
puter. The fourth phase is the execution of the established action, while 
the fifth and sixth phases correspond to the perception and understanding 
of the computer reaction to the previous user action. Finally, the last phase 
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Figure 1.1: The general interaction framework. 

corresponds to the evaluation of the reached state with respect to the user 
aim: if the reached state does not reflect the user aim, then he can formulate 
another goal and repeat the cycle. This final "evaluation" phase suggests 
the possibility of errors occurring, being deteced and corrected. This detec­
tion and recovery from error as part of interaction is one of the reasons why 
most interactive computer systems now support some form of undo. We will 
return to this issue in succeding chapters. 

As said before, the Norman's model analises the interaction cycle only 
from the user point of view, whereas the computer is simply considered as 
the interface. Another interaction model, explicitly involving the computer, 
is the general interaction framework, proposed by Abowd and Beale [2J. 

In this model, represented in Figure 1.1, we have four components, the 
system (S), the user (U), the input (I) and the output (0). After the user 
has identified his goal and what he has to do in order to reach it, then he 
must provide his input to the computer. To do this, he needs to articulate 
his request in the input language. In the following step, the input is trans­
lated into the system language, and the system executes the required action, 
which, at this point is presented to the user as output. The user observes 
the result and, evaluating it with respect to his aim, can decide to .eventu­
ally start again the interaction cycle. In this model, the input and output 
components meet on the interface. which is the communication cha.nnel be­
tween a human and a computer. Such a communication is bidirectional: one 
direction is from the human to the computer (the input), the other is from 
the computer to the human (the output). 
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1.4 The interface 

The user interface is the part of a system the users interact with. It is hard to 
describe good user ii1terfaces by words without showing them, and it is even 
harder to write about something that is interactive without presenting it 
interactively. But, then, what is a good interface? The best ones are those 
that a person cannot see, i.e. are transparent, so there is no interference 
between the user and the task, e.g. writing on paper [61]. There are different 
ways in which a human and a computer may communicate, depending on 
the different interfaces, i.e. on the interaction styles. In the taxonomy on 
man-computer interaction by Ben Shneiderman [81], the advantages and 
disadvantages of five interaction styles are illustrated: menu selection, form 
fill-in, command language, natural language and direct manipulation. Visual 
and graphic approaches are powerful representation of the 'world of action' 
[34], which include selectable displays of objects and operations. Then, by 
pointing, zooming and panning these objects, the user can rapidly perform 
actions, immediately see their results and, if needed, reverse the last action 
(undo). 

In computer science applications, interface design is taking more and 
more into account the results of psychological research. Neuro-physiological 
processes, such as brain reaction to different visual patterns or different 
responses to color and brightness, contribute to attention focusing and in 
this way heavily influence knowledge acquisition conditions, when exploiting 
visual learning. This leads to a new way of interpreting human interaction as 
a whole, and in particula.r to the need to take into account human behaviour 
and responses for an adequate design of computer interfaces. The focus 
of this design has moved from an application-centered approach, often too 
difficult to be understood by users, to a more user-centered perspective. 
Following a user-centered approach, the users are involved in different ways 
during the development of an application software, e.g. as part of the design 
team, subjects in user analysis studies, as main actors in simulation sessions 
and in evaluation activities, they can also comment on working versions of 
systems. 

In order to evaluate how "good" a user interface is, several aspects need 
to be taken into account, because a user interface is not composed only of 
separate hardware and software elements. Therefore, its quality depends 
partially on the hardwa.re (e.g. how display resolution or processor speed 
impact on the decisions), partia,lly on its functionality (e.g. whether the 
user goals can be reached with the system) and partially on its usability 
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(e.g. how easily users can accomplish their tasks). 
Recently, emphasis has been posed on evaluation techniques, since there 

are several reasons to evaluate systems. People involved in developing soft­
ware products are interested in evaluations to assist in making design de­
cisions and to determine whether or not the products achieve the quality 
measure that must be met. Cognitive psychologists have been interested in 
evaluating software in order to study general aspects of human cognition. In­
dividuals, who buy the software because they want to use it, need to eva.luate 
the software before purchasing it to check whether it answers key questions 
about usability. Even if there is some similarity in the various approaches, 
since they are all trying to answer whether the system adequately meets the 
needs of the user, the above interests are not served by a single evaluation 
methodology. For this reason, a variety of techniques have been proposed 
[22]. 

1.5 Usability aspects 

The concept of usability, very difficult to grasp in a single, natural definition, 
has been expressed in the literature with a variety of schemes different from 
each other. Some of the most significant will be mentioned below. Beginning 
in 1971, ~,1iller [.58] gave his definition of usability in terms of ease of use. 
Much later, in 1991, Shackel [80] gave another definition, an operationa.l one, 
considering four factors: 

(a) effectiveness, defined as the requested range of tasks that must be 
carried out at better than a determined performance level; those tasks 
must be performed by a required percentage of a specified range of 
users; 

(b) learn ability, which refers to the performance achieved after some spec­
ified time, using some specified amount of training and support; 

(c) flexibility, defined as adaptation to some specified range of variation 
in user tasks: 

(d) attitude, which refers to acceptable levels of human cost (e.g. fatigue, 
discomfort) and perceived benefits. 

More recently, in 199:3, Badre [.5] defined usability of a software product 
as ease of learning and ease of use: this means that less effort should be 
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required to the user to perform a task and also that he should make less 
errors. In the last years usability has became one of the major research 
.areas in HCI, so that the need arose to provide a standard definition. Two 
accepted definitions are: 

• ISO 9126 [41] (software product evaluation): "A set of attributes of 
software which bear on the effort needed for use and on the individual 
assessment of such use by a stated or implied set of users" . 

• ISO 9241 Part 11 [42] (ergonomics requirements for office work with 
Video Terminals): "The effectiveness, efficiency and satisfaction with 
which specified users can achieve specific goals in a particular environ­
ment". 

MUSiC (Metrics for Usability Standars In Computing), an Esprit Project 
(Esprit Project #.5--129) [54], has provided some tools to measure its quanti­
tative components, i.e.the measurable elements of the quality of interaction 
between the user and the overall system. Its definition is "the extent to 
which a product can be used with efficiency, effectiveness and satisfaction 
by specific users to achieve specific goals in specific environments" [.51]' As 
we can see, this definition is in a,ccordance to the reccomandation of the ISO 
9241- 11 (see above). Bevan and Ma.cleod say in [52] that the quality of 
interaction can be measured taking into account three factors: 

(1) the effectiveness, i.e. the extent to which the established goals of the 
system can be achieved; 

(2) the efficiency, i.e. the resources as time, 1110ney, mental effort spent to 
achieve the established goals; 

(3) the satisfaction, i.e. the degree of acceptance of the overall system. 

They also emphasize that the measures of the three above mentioned 
quantitative elements do not depend only from the product characteristics, 
but they are also a function of the context in which the product is to be 
used. Their scheme, reported in Figure 1.2 (from [52], page 7), illustrates 
the components of usability. This scheme clarifies that the usability has, 
as main components, three quantitative elements that make up the qual­
ity of interaction, but these ones a,re tightly binded to the overall system 
components, i.e. the elements that compose the context. These are: 

(1) the users, in fad (as we saiel in the previous sections) it is fundamental 
to know the real user, his knowledge, experience and needs; 
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(2) the task goals that the system allows the user to achieve; 

(3) the equipment, i.e. hardware, software and materials; 

(4) environment, i.e.the physical and social environments which may in­
fluence the interaction. 

System developers should perform different analyses on users: 

(a) user characterization: it involves attempting to capture all of the in­
formation about the target user groups that is relevant to the proposed 
system; 

(b) task analysis: it involves attempting to understand user's goals and 
activities, as well as tools they use and environment they work in; 

(c) situation analysis: it involves an appreciation of the situations that 
commonly arise as part of the user's normal work activities, and a 
consideration on how these might affect both the user's needs and 
preferences. 

(d) acceptance criteria.: it refers to understanding users' requirements and 
preferences, which then form the acceptance criteria for the system. 

The above mentioned analysis are related to psychology, ergonomics, 
artificial intelligence, ... , but, in order to be fruitfully exploited by designers, 
such analysis should express concepts in a clear and unambiguous way. 

1.6 FOrIual luethods in HeI 

In HCI, all the contributions from different research areas need to be properly 
understood by all the pa.rtners of the design process in order to be correctly 
used. The use of forma.l rnethods, based on precise notations and mathe­
matical models, allows the different partners which collaborate in the design 
process to provide their contributions in a precise, clear and understandable 
way. 

Formal models may be used to describe the system, the user, the task. 
Different formal methods have been proposed in the literature for mod­

elling the system's interface behaviour [29, 1, 32, 1.5,40,68, 67]. 
Cognitive models [17, 1:3, 79j may be used to describe in a formal way 

users a.nd tasks. 
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Architectural models [23, 71] are employed describe the structure of a 
usable system which can be refined in an executable version, still mantaining 
the usability propeties. 

Focusing on the first of these three types of model, interactive systems 
may be formalised at three different levels [25]. They are 

• dialogue specification and analysis; 

• specification of individual interactive systems: 

• generic models of interactive systems. 

Formal methods may point out problems and inconsistencies of a system 
before it has been implemented. If all, or the main, problems are highlighted 
at the beginning of the development, then the following steps of the life 
cycle of an application software will need very few modifications and so the 
testing time will be reduced. The employment of formal methods does not 
guarantee the usability of a system. However, some formal properties (such 
as predictability, observability, reach ability, ... ) are necessary for usability, 
and if a system does not satisfy such principles, then it may be unusable in 
many circumstances. 

Dialogue specification and analysis 

In Hel, dialogue refers to the structure of communication between a human 
and a computer. It is extremely important to formalise and analyse dialogues 
in order to eventually find usability problems before the system has been im­
plemented. There are different notations which may be employed to specify 
a dialogue. Basically, such notations may fall in two classes, diagrammatic 
and textual. 

The diagra.mmatic notation is easy to read since the designer can see at a 
glance the structure of the dialogue. State Transition Networks (STN) [38] is 
one of the most widely used models. It is based on transition diagrams, which 
are diagrams made by circles (to represent states) and arcs (to represent 
transitions). Each arc is labelled with the name of an action. This notation is 
useful in order to represent a seq uential and iterative portion of the dialogue; 
it is not the most suitable to represent concurrent situations; in this case, 
Petri Nets may be a more suitable notation [9, 10]. 
Textual notations are easier for a formal analysis; the most widely used are 
grammars and prod uction rules. 
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Analysing a formally described dialogue, interesting properties may be 
verified. For example, with a diagrammatic notation it is easy to verify if 
the dialogue is complete or not; in fact, in the last case, there is an action 
which cannot be performed in some state. Another property that is easy to 
verify is non-determinism. If, starting from the same state, there is more 
that one arc with the same label, then the dialogue is non-deterministic for 
that action. Both completeness and non-determinism are properties related 
to the action. An interesting property related to the state is reach ability. A 
dialogue has the reach ability property if any state may be reached, that is, 
if the diagram which represents the dialogue is fully connected. Often, the 
consistency property is analysed for the dialogue described with a textual 
notation. In [79] the authors give an example on how to analyse consistency 
by applying Task-Action Grammar. A deep discussion on dialogue is in [32]. 

Specification of iridividual interactive systems 

An abstr"act mathematical description of an interactive system, before its 
development, is useful to explore the validity of design choices. By reason­
ing on the formaJ description, rather than on the real system, the eventual 
problems are discovered at the beginning of the developing phase. 

In [7.5] Christopher Rouff points out the seven issues which make a spec­
ification formal: 

• written 

• communica.ble 

• mathematical 

• preGise 

• unambiguous 

• su pparts analysis 

• supports reasoning and predictioll. 

He also provides th ree mai n" reasons for" using forma.l notations: 

• they give a precisE' and unambiguous description of the functionalities 
considered: 

• they constra.in designers to clarify aspects of their design; 
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• they allow designers to reason on their systems. 

Formal specifications can also be used for analysis and verification of 
interactive systems. 

A system specification may be done using some existing nota.tion, a.s Z 
or the Act-One languages. A specification may also be done only for some 
component of the interface, not for all the system. 
Sometimes, an existing and general POUl'pose formal notation may not be 
suitable to specify components of the user interface. To this aim, some new 
notations ha,ve been introduced. Usually, they arise as a modification of an 
existing one, or by a combination of different notations. An example of these 
is given by leO [10], which is a formalism based on Petri nets and on the 
object-oriented approach. 
In order to understand the behaviour of some component of the interface, 
it may be convenient to abstractly describe such a component as an object 
and then to describe with a formal notation the behaviour of such an object. 
An interesting example is provided by the interactor model [36]. 

Generic models of interactive systems 

Abstract models are used to describe properties of a class of interactive 
systems, not of a specific one. An abstract model may be employed during 
the first phase of the development of an application software, i.e. the users 
requirements. Usua.lly, such requirements are informal, and it is difficult 
to map something informal in logical and realizable steps which have to be 
implemented. Moreover, if the system description is informal, we cannot 
say precisely if the system satisfies the requirements or not. An abstract 
model may help in filling the distance between informal user requirements 
and formal specification, distance which is usually called the formality gap 
[29]. An example of abstra,ct models is the PIE model [27] which we will 
discuss in the following Section: other abstract models a.re given in [43, 24] 

1. 7 The PIE lllodel 

The PIE model is a black-box model. With a black-box model it is possible 
to describe the behavior of an interactive system only in terms of the perceiv­
able effects, without taking into account implementation aspects. The PIE 
describes a system in terms of its inp\lts and of the corresponding effects. 
The input is a command c or a sequence of commands, belonging to a. set 
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input .. output .. 

Figure 1.3: The black box model 

of legal commands C. A program p is a command sequence, while P is the 
set of programs. All inputs are interpreted by a function I (Interpretation 
function), producing an effect e, which is the output; the set of the effects is 
E. Due to last three used capital letters, this model is called PIE. An impor­
tant feature of this model is the flexibility of the space of the effects, which 
may be seen as the display observed by the user, or as all the content of a 
file, or as all the information available to the user. Also the set of programs 
is flexible. It may be seen as keystrokes or mouse movements or a sequence 
of more abstract operations of a specific domain provided by the user or the 
system. The choice of a black-box model has different advantages. The main 
advantage is that it represents a.n interactive system from the user point of 
view, that is without taking into account the internal structure. Moreover, 
it allows to express properties of interaction which are independent from the 
domain and from the implementation. Its behaviour may be mathematically 
represented, so the properties are precise and may be proved. 

We can defi ne a PIE as a triple < P, I, E >, or we can expand the 
interpretation function as follows: 

I:P-+E 
Each PIE may also be described in term of states and transition func­

tions. Indicating with S the set of states, we can define the transition func­
tion doit as: 

doit : S x C -+ S 
starting from the init.ial state So. The dod function is a very simple way to 
describe interaction. 

In order to obtain an effect from a. sta,te, we need a function, a projection 
[rom all the state information tel that regarding the effect: proj : S' -+ E 



1.7. THE PIE MODEL 21 

In this ma,nner, we can handle a PIE as a sextuple < C, S, E, SO, doit, proj > 
instead of a triple. 

1. 7.1 Predictability 

One principle that an interactive system should guarantee is predictability, 
for which the user, starting from thecurrent effect, should be able to predict 
the behaviour of the system once a commands sequence has been entered. 
At this point we have to introduce some definitions and properties regarding 
the commands sequences which are equivalent or seem to be so ([29, 32, 84]). 

Given two different commands sequences p and q, we say that p is equiv­
alent to q if they have the same interpretation. \Ve can define an equivalence 
relation =1 for any PIE: 

p = 1 q ~ I (p) = I ( q ) 
Most current systems allow the user to obtain a particular effect in more 

that one way. but, following more than one path, different internal states 
may be reached. \Vhen \ve are in this situation, we say that such an effect 
is ambiguous. Formally, indicating the concatenation of command with '''""'', 
we have: 

ambigll,01Ls(e) ~ 
:3 p, q, l' E P s.t. I(p) = e = I(q) and I(p"""' 1') =I I(q """' 1') 

The ambiguous effects are due to the different command histories. 
If no effect is ambiguous, we say that the PIE is monotone. 

monotone: Vp, q, rEP, I(p) = I(q) ==>- I(p r--, 1') = I(q """' 1') 
The monotone property says that it is possible to predict the future 

behaviour of the system from the current effect. The last property allows 
us to introduce another definition of equivalence, the monotone one =t. 

Given two different sequences of cOlllmands p and q, we say that they are 
monotone equivalent if they have the same interpretation and, once entered 
any command sequence 1', the)' continue to have the same interpretation. 
Formally, 

p =t q ~ I(p) = I(q) and VI' E P. I(p r--, 1') = I(q r--, 1') 
vVith the monotone equivalence, what 100k8 the same is the same. If the 

PIE is monotone, then we can talk about effects or states indifferently. In 
this case we have that E = (PI =t) = S, where PI =t is the quotient of P 
OIl the monotone equivalence and S is the set of the reachable states. From 
the definition of monotone equivalence we have'that 

p =t q ==>- I(p) = I(q) 
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which means that =t :::} =1. We ma.y call =1 weak equivalence. 
If the PIE is monotone, we can express the doit in terms of the interpre­

tation function, as follows: 

I(null) = so; 
V p, q E P, doit(I(p), q) = I(p r--- q) 

1.7.2 Reachability 

An important property of the PIE model is co-rnpleteness. A PIE is complete 
if any effect is produced by the interpretation of a suitable program: this 
implies that the interpretation function is surjective. The completeness of a 
PIE represents the simplest reachability condition. Witil the term reachabil­
ity we intend the possibility for the user to obtain a wanted effect starting 
the computation at any state. If, after a program p, the computation has 
been interpreted with an effect e = I(p), and the user wants to obtain an ef­
fect e', he must find a suitable progralll1' such that I(p ~ r) == e'. Formally, 
we say tha.t 

"ife E E: "ifp E P,:3 l' E P : I(p ,....., r) = e' 
This implies that a PIE has the reacha.bility property if the interpretation 

function I is not only surjective, but surjective "ifp E P. The above definition 
is called strong rea.chability. 

A special case of reachability is undo, with which the user can reach 
the previous state. If we consider P as a semigroup, provided with right 
program concatenation as the associative operation, the monotone equiva­
lence is a right congruence. It is natural to study the full congruence, where 
the equivalence is preserved in all contexts. This equivalence is the strong 
equivalence, which we indicate with'" . Two programs p and q ai"e strOllgly 
equivalent if they produce the same effect, with the same history and with 
the sa.me future action. Formall? we have: 
p"'q == "ifr,sE P, I(1'''-'''p,.-..,s) = I(l,,.-..,qr---S) 

With the canonical projection We move from P to the quotient PI'" for 
which the null command is the identity element. 

Later we will suggest that undo is also a form of reach ability. There are 
different kinds of undo and the strong equivalence will be very important in 
describing tlw required properties; Undo can be seen as a function which 
modifies the command history. One type of undo considered in [29] is the 
existence of a function 

Undo: P -7 p, such that p ~ Undo N null 
such that with such an unclo the quot.ient set PI '" is a group. 



1.7. THE PIE MODEL 

parse 

P ___ I_---;>P" E 

pro] 

I
, 

p'--------:il>~ E' 

Figure 1.4: Isomorphism between PIEs. 

1.7.3 Relations between PIEs 

Given two PIEs, < P, I, E > ane! < pi, I', E' >, we say that a,n isomorphism 
between them exists if there exists two one-to-one relations, par'se : P -+ pi 
and proj : E --+ E' , such the diagram of Figure 1.4 commutes. A special 
case of isomorphism between PIEs is given by < P, I, E > and < P, 1/ =1 

,Ej =1>, in which parse is the identity and proj is a one-to-one function. 
Usually, the proj and parse are general relations, sometimes with restriction 
on par'se. A special kind of relation is given considering both proj and parse 
as functions; the major cases follows: 

• 1 - morphisms: both pru'se and proj go in the same direction; 

• 2 - mOl'phisms: parse and pro) go in opposite directions; 

• 0 - rnorphisms: either pOl'se or proj is one-to-one. 

The 0 - morphism is a special case of morphism in which either parse or 
proj is one-to-one, that is I-morphism and 2-morphism coincide. In Chapter 
7 we will consider. O-morphism where parse is the identity. As this is the 
only kind of 0- morphism used in the thesis, we will use O-morphism to refer 
to this case from now on. 

An exhaustive discussion on PIEs and relations between them is given 
in[29, 28]. 
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Figure 1..5: The Red-PIE 

1.7.4 The Red-PIE model 

The PIE model may be refined in order to distinguish between two different 
cha.ra.cteristics of the spa.ce of the effects: the result a.nd the displa.y. The 
result is the fina.l prod llct of the intera.ction between a. huma.n a.nd a. com­
puter, while the display represents intermedia.te a.nd ephimera.! aspects of 
the effects. 

The PIE refi ned with result a.nd displa.y is ca.lled red- PIE. This model is 
an enrichment of the origina.l PIE with other two functions; result: E ""'+ R 
a.nd display: E -+ D, where R is the set of results a.nd D is the set of 
displays. A diagram of this model is provided in Figure 1.5. 

The PIE model has been used to a.na.lyse different properties ofintera.ctive 
systems. One of these is the WYSIWYG (wha.t you see is wha.t you get) 
principle, for which wha.t the user ca.n see is rea.lly wha.t he gets. In the Red­
PIE model, WYS is given by the display, while WYG is given by the result. 
Importa.nt properties of intera.ction ma.y be cha.ra.cterised as rela.tionships 
between result and displa.y. One of these is the predict function, 
predict: D --+ R 
V sEE, predict(dis]Jlay(s)) = 7'esult(s) 
for which starting form any display, it is possible to predict which will be 
the result. . 

The basic concepts of the PIE model, introduced in this Section, will 
be llsed in Chapt.er 4., G and 7 in order to describe properties of intera.ctive 
systems with and without undo and the relationships between them. 
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Chapter 2 

Interactive Systems 

In this chapter, an interactive system is defined as a subset ofa reactive one. 
HeI is a particular kind of interactive system, in which one of the involved 
entities is a human. 

In order to allow a dialogue between entities which use very diverse lan­
guages (as it happens for humans and computers), it is necessary to support 
the communication with suitable interaction languages. Such languages al­
low the user to communicate with the computer in a way that is as easy 
and comfortable as possible, yet necessarily depending on the nature of the 
application, the user needs, skills, background, etc. 

Differences between interactive languages and traditional ones will be 
highlighted. In particular, since the main feature of interactive systems is 
represented by the feedback, the explicit answer to any user action, emphasis 
will be given to the pragmatics in interaction languages accounting for the 
interpretation of the feedback. 

Since visual interfaces may be seen as interaction languages which allow 
the user to reach high level of interaction, their properties are discussed in 
this chapter and a model of human-computer interaction based on the visual 
approach is proposed. 

Finally, a table including the main characteristics of interactive systems 
is shown. 

2.1 Reactive systeuls in coulputing 

Sometimes the words interactiue system. have been improperly used, or as 
buzzwords, not always based on a full understa:nding of their meaning. 

2.) 
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Most computer users think tha,t an interactive system is a computer, 
provided with a visual interface and a mouse. Probably, this is due to the 
fact that visual interfaces and mice represent the main components of the 
most common and spreaded interactive systems. But it is not a mouse or 
a visual interface that makes a system an interactive one; To clarify what 
an interactive system is, it may be useful firstly to introduce the concept of 
reactive system. 

The notion of reactive system is extremely natural, and, as well as all 
the innate and obvious things, difficult to express. It IS a very general 
concept and may also be applied to different fields. In fact, many examples 
of reactive systems are offered by nature, particularly in the world of biology 
and chemistry. A broad definition considers a reactive system as a complex 
whole, a set of entities in which any component is able to provide a response 
to an external stimulus [70]. 

An interactive system is a special case of a reactive one: it may be seen as 
a set of entities which are able to provide a reaction to an external, stimulus 
not only once, but many times, so generating a sequence of stimuli and 
responses between at least two entities. 

In the computing world, an example of reactive system RS is given by 
the computer and all the entities, internal and external to it, whichare9;ble 
to give, and/or react to, external stimuli, external in the sense that they are 
provided by another entity of the same system. Also in this case, as in the 
real world, an interactive system IS is a subset of the reactive system RS 
[69]. Any entity of this reactive system may be seen as a process, an object, 
or what Milner [59] defines as an agent. 

Examples of elements belonging to RS are those processes which are 
activated by system fuctions. In this case there is no dialogue, but simply a 
communication of a stimulus from a sender process to a receiver one, which 
is then activated. 

Interactive processes are those processes that react one to the stimuli of 
the other and a continuous exchange of information, i.e. stimvli, between 
the two communicating processes, is present. 

HCI is a specia.l kind of interactive system, in which the two involved 
entities in the communica.tion are a human and a computer. This means 
that the interactive system involved in HCI is given by the computer and the 
user, not by the mouse and the visual interface. The mouse and the visual 
interface represent tools, (which are not unique) for communication between 
the two involved entities. 

Figure 2.1 shows the hierarchy of a reactive system in computing. The 
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Figure 2.1: The hiera.rchy of reactive systems in computing. 

external set represents the reactive system RS; the interactive system IS is 
a subset of RS and the inner set is HC I: in this way we have the following 
hierarchy: HCI ~ IS ~ RS. 

Since the aim of this thesis is to focus on aspects related to HeI, in 
Figure 2.1 we may also skip the interactive processes that do not involve 
humans (for exa.mple agents in expert systems). In this way the hierarchy 
is reduced to HeI ~ RS (see Figure 2.2). 

In the following Sections, dialogue [32] and communication aspects in 
HeI will be discussed. 

2.2 Dialogue 

Each entity involved in any communication requires the ability for reciprocal 
comprehension in order to partecitate to a dialogue. Such a dialogue happens 
in a natural \-vay when the involved partners are humans that use the same 
spoken language. This becomes more difficult, or even impossible, when the 
communication occurs between entities that are using different languages: 
the more "distant" the languages, the more difficult the communication. 

Within HeI dialogue refers to the structure of the communication be­
tween a human and a computer. The kind of communication to which most 
humans are used is the verbal one, employing a spoken language; on the con-



28 CHAPTER 2. INTERACTIVE SYSTEMS 

Figure 2.2: Hcr is a subset of reactive systems in computing. 

trary, the language of the computer is made by 0 and 1 strings. Since humans 
and computers use two different languages, in order to allow communiGation 
between them, it is necessary to provide a support to the interaction: a 
suitable interface. 

The interface is the medium [33] through which such a communication 
takes place. There is not a unique interface style, and, the reason for the exis­
tence of such a plurality is due to the fact that interfaces change with evolving 
technology. During this transformation, slower at the beginning and faster 
in recent times (because of the speed of technology changes), interfaces grad­
ually evolved, passing through the command-line, question-answers, form­
filling, menu interfaces [80, 44], until the actual visual approach and virtual 
reality environment present today. The interfaces evolution does not imply 
that the past interfaces may no longer be employed. In fact, the choice of the 
most suitable interface depeilds on the aim of the application, on the kind 
of task that the user has to perform, on the users class, etc. The change of 
interface styles is the result an attempt to improve HCr, making it as close 
as possible to the human-human communication. 

Any interface style is an £ntem,ction language [85]. The more natural and 
easy the language, the higher is the interaction level that a human can reach 
while interacting with a computer. By level of interaction we mean a kind of 
dialogue ordering: the closer human-computer communication is to human­
human, the higher the interaction level. Traditional programming languages 
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and the last generation of interaction languages -the visual approach and 
virtual reality environment- represent the opposite poles along the rank of 
interaction levels, while all the other interface styles are in the middle. 

Of course visual interfaces and virtual reality, the last generation of in­
teraction styles, are not the final result of this research, but certainly in the 
future a further evolution of an interaction environment will be provided. 
Actually, one of the most common interface styles, combined with the use 
of a mouse, is the visual one, due to the fact that this approach makes in­
teraction as simple as possible, basing the communication on the essence of 
interaction, on the action-reaction cycle. In the action-reaction cycle, the 
user sees an object, provides his input and observes the result produced by 
the computer, so becoming the integral part of a loop [31]. 

Moreover, interactive systems are not a barrier for handicapped people. 
On the contrary, interactive systems, provided with suitable devices, may 
represent an important step to allow handicapped people to become more 
and more part of the society. In fact, depending on the nature of the hand­
icap, different interaction languages may be provided. Particularly, systems 
suitable for blind people are based on audio tools [74]. 

2.3 Interaction languages versus traditional ones 

A comparison between a spoken language, an interaction language and a 
traditional programming language may well show the power of interaction 
languages. 

Any spoken language is based on '-Nords as a sequence of elements be­
longing to a finite alphabet of symbols. Such words may represent any of 
the nine parts of speech: noun, adjective, article, verb, etc. In traditional 
programming languages we have elements with a role similar to the parts 
of speech: a variable as a noun. a pointer as a pronoun, a data type as an 
adjective, a function (in a broad sense, considering both subprograms and 
operations) as a. verb, etc [:37]. 

Using a spoken language, we do not declare any part of the speech; for 
example, before using the word .. tree'> in a conversation, we do not say that 
"tree" is a name. \Ve simply use that word, without any declaration, because 
the fact that it is a name is implicit, it is given by the (previous) knowledge 
of the grammar of the employed language. 

'When using a programming language, the compiler or interpreter recog­
nises the lexicon and syntax and checks the correctness of the lexical and 
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synctactical forms, but the computer does not know whether pI is a pointer 
or a function, if pI has not been declared in the program. 

When using whatever interaction language, as in a spoken language, there 
is no declaration of any "part of the speech" by the user. This means that 
there is no explicit knowledge of the lexicon, because the last is naturally 
provided by the interface, as fields the user has to fill, or menu items, or 
icons, etc. depending on the kind of interface style. 

Less immedia.te may be how to properly handle these elements, that is 
the syntax. Employing a tra.ditional programming language, any user has 
explicitely to learn, by consulting books or manuals, the syntax of the chosen 
language, employing time and, often, much effort is required. Moreover, a 
correct syntax may not ensure that a prefixed goal may be reached: this 
may only be done with a correct interpretation of the statements, that is the 
semantics. So, before starting to-program, a user has to learn the lexicon, 
syntax and semantics of the chosen programming language. 

Conversely, while using an interaction language, the syntax is driven by 
semantics, in the sense that the order of execution depends on what the user 
wa.nts to obtain. In this case, the interaction itself is task-driven, because 
any user action is mot.ivated by what the user is interested in achieving. 
In particular, for interfaces styles that allow a high level of interaction, the 
syntax is immediate, a.nd, in only a few situations, the system forces the user 
to do some actions following a well established execution order. 

2.4 Pragnlatics in Interaction Languages 

\Vhen using a traditional programming language, the pragmatics, i.e. the 
interpretation of com pu tation results and their consequences, has not been 
considered strictly related to the lexicon, syntax and semantics of the em­
ployed language. We genera.lly talk about syntax and/or semantics of in­
structions, while we talk about results of computations. Due to the nature 
of t.radit.ional programming, it is not possible to use partial results in order 
to provide the next input; in fa.ct, the computation result is interpreted at 
the end of the comput.ation itself and the programmer may a.gree with it 
or not; if not, some changes may be done on the data and/or instructions 
before starting again the computation. Pragmatics is also implied in this 
case -with the int.erpretation of the results- but is considered external to the 
computation itself, in the sense·that t.he programmer ca.n use it only at the 
end, not while the program is running. 
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Figure 2.3: Different dimensions of the interaction language and system 
language. 

On the contrary, within interactive systems, the interpretation of results 
plays a very important role, since it is the "engine" of the interaction. 

Actually, in interactive systems it is not only important to have a cor­
rect interpretation of the user actions, but also of their consequences. Such 
consequences are not merely the feedback, but the interpretation of the feed­
back, i.e. the pragmatics,depending on the physical working environment, 
the user aim,knowledge, expectations, etc. The·result of the interpretation 
is the basis for the successive user action. 

In Figure 2.3 the dimensions of interaction and system languages are 
schematised. The same user action has a double interpretation: one is from 
the system point of view, and generally humans ignore it, while the other 
is from the user point of view, which is exactly the one in which the user 
is interested. In the pragmatics, as the interpretation of the feedback, is 
intentionally lacking in the system language, so the schema results unbal-

. anced. In fad, if we introduce pragmatics to th~ system's language, w~ may 
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Figure 2.4: An example of the different dimensions of the user and system 
language. 

imply that the system is adaptive [19], yet the purpose of this thesis is not 
specifically to deal \:ith adaptive systems, but, more generally, to interactive 
ones. 

By using interface styles which allow high interaction level, the system 
may be considered as a black box. 

Employing a visual interface, for example, it is not importailt for the 
user to know that, working with a word processor, if he clicks on the menu 
in the location (78.45, 182.12) he can change the font of the selected text 
from the actual one to Courier, but it is important to know that if he wants 
to change the font of the selected text he can choose, from the Font menu, 
the font he needs, for example Courier (see Figure 2.4). This not only means 
that the interaction is semantic-driven, but also that for the user the system 
is in fact like a black box: he is only interested on what he can provide as 
input, and the system could return as output, on the surface of the black 
box, i.e. he does not care about- the contents of the box itself [46]. 
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2.5 The visual approach 

As said in the previous Sections, visual languages, provided with a suitable 
device (very often a mouse) allow the user to reach a high level of interaction. 
In this Section, we are going to account for the power of visual languages. 

In the field of computer science, the term 'visual' refers to something 
which is represented in a graphical, bidimensional manner, in contrast with 
a linear, textual one. For example, in a command line interface a text doc­
ument is specified only by its name (textual, linear representation), while in 
an iconic interface it is indicated by an icon, which is graphical and bidi­
mensionaL Visual languages allow the user to directly handle instructions 
and data, both visually represented by the interface of the employed appli­
cation software. One of the main features of the visual approach is that it is 
more immediate with respect to the traditional one: actually, with a simple 
glance, it is possible to know which objects we can handle and also their 
different nature (for example, icons representing files are different from the 
ones representing folders or applications). 

Moreover, such an approach is based on the visual representation of both 
objects and language constructs, making it independent from the user native 
language and so being usable by a wider number of people. 

The lexical level of a visual langu age may be considered as the set of 
visual signs which one user can perceive and understand by looking at the 
screen, and which may be provided by the user himself as input or by the 
system as output. Such visual signs (buttons, geometrical shapes, icons, 
menu items, etc.) are handled by the user simply as data or program func­
tions, without any particular knowledge about them. Under the surface .of 
the application software, i.e. the interface component communicating with 
the computer, the programmer makes a clear distinction among the diverse 
nature of the displayed objects. with an explicit declaration of data types, 
links, su brou tines, etc. 

The actions which one user can perform, which are the events, are very 
easy to produce: it is possible to click once or twice on visual objects, or to 
drag them, or to enter commands by using the keyboard. 

The user does not need to learn the syntax of the visual language (even­
tually it is the lexicon which may create more trouble: in fact, the user may 
have some problem in understancling the metaphor that is associated to any 
visual object [18]), because it is im mediate; he sim ply navigates through the 
system producing events using a suitable device. If the user himself tries to 
perform a forbidden action, as when if he is following an incorrect syntax, 
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the system will highlight this situation by opening a. dialogue box, or by 
means of a "beep", or simply by not executing the last entered command. 

When the syntax is not immediate and needs sOnie other specification, 
the system usually refines the dialogue with a submenu or dialogue boxes. 

We can say that the syntactic level in visual languages is represented by 
the legal arrangements into which visual signs, displayed on the screen, can 
be organized by the user as input or displayed by the system as output. 

The sequence of user actions, that is the interaction history, is strictly 
related to the semantics of the actions themselves. In fact, any user event 
is motivated by what the user himself wants to obtain: for example, if he is 
interested in opening a file, he can select the item "Open" from the menu 
title "File", or may enter the equivalent command with the keyboard, or 
by a double click on an icon. Along this way, the interaction is driven by 
semantics, since any user command is chosen according to its interpretation 
from the user point of view. In a semi-formal way, we can say that the 
semantic level represents the meaning of the communicatioh, the effect of 
the user actions. As a consequence, from the system point of view, such a 
level represents what the system is going to do, while from the user point of 
view it represents what the system should do; after having received an input. 

In HeI the importance of pragmatics is directly proportioned to the feed­
back that the system provides to any user action. For this reason, the more 
the interface style allows a high level of interaction, the more the pragmat­
ics become important, since the pragmatics provides the interpretation of 
the feed back, in order to establish the next user input. In visual languages, 
in a semi-forma'! way, we can say that the pragmatic level represents the 
perceptioil of visnal signs on the interface and their understanding by the 
user. 

A model of human-computer interaction, based on the visual approach, 
is proposed in Figure 2 .. 5. In this model, syntax, semantics and pragmatics 
are merged together in the user mind, while the visual representation of 
elements (lexicon) is displayed on the interface. 

From the user point of view, when he is using a visual language, he is han­
dling the data directly, without any other medium in between. Instead, he 
is performing a dialogue through a language and, what he imagines as data, 
is really a visual representation of the data on the surface of the application 
software with which he is working. 

We can say that the power of the visual approach is in the reduction of 
the ga.p between the user language and the system language, allowing an 
interaction as easy as possible so increasing the usability of the applica.tion 
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software [57]. 

2.6 Features of interactive systems 

In the last Sections, we informally described the dialogue, the way in which 
a user can provide his input to an interactive system, but we have not said 
what an interactive system is. In next Chapter we will provide a defini­
tion, while in this Sectiori we are going to describe an interactive system in 
terms of its main feames, which differentiate it with respect to a traditional 
system. To do this, we consider both the perceivable features (as the feed­
back, recovery functions, ect.) which a user can perceive simply interacting, 
and the internal ones. The last are related to the code structure, so that 
only the programmer knows them, but their presence strongly influences and 
chracterizes interaction. 

Looking at an interactive system from a programmer point of view, its 
code presents a strong modularization. This fact was and is present also 
in traditional programming languages, but only as a functional structure, 
without any direct consequence for the user. In fact, such a modularization 
is at the processes level: its effects are only inside the black box. 

Conversely, in interactive systems, the presence of modularization as­
sumes a different importance: it is used here to break down a problem into 
many subproblems, as much as possible independent each one from the oth­
ers. Such subproblems are small blocks of code, which may represent agents 
or objects and, depending on the adopted interface style, are represented on 
the surface as fill-in forms, menu items, icons, buttons, etc. Differently from 
traditional programming languages, with interactive systems the user can ex­
ploit the effect of modularization. In fact, the code modularization happens 
under the surface of the application software and the user does not realise 
what is happening. But, after the interactive application is started, the user 
can provide his input to the computer, employing event-driven and/or an 
agent-based approach, by choosing the order of the modules execution, or­
der which depends on what he needs/wants to do. This means that now 
the computation is not forced anymore to follow the way envisaged by the 
programmer, but is driven by the user. Naturally, the user cannot always 
perform everything in the order he wants, since he has to do any actions 
following the right syntax. But the constraints that have to be respected 
are usually more or less a "natural" (depending on the interaction level) 
representation on the computer, step by step, of the task the user is going to 
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perform. We can say that the main consequence of modularization in inter­
active systems is that, by being present on the interface, it may be exploited 
by the user in order to drive the interaction. 

Synchronization, as well as modularization, was and is present in tra­
ditional systems too. In traditional systems, synchronization problems are 
related to system processes and those generated by the execution of a pro­
gram. However, the processes generation is pre-planned and usually a good 
utilization of semaphors and monitors may be enough to guarantee a correct 
system functioning by handling critical sections. In interactive systems the 
situation is similar, except for the fact that processes may be also activated 
by the user, without any pre-planned strategy. This means that the num­
ber of concurrent processes and synchronization problems may be higher in 
interactive systems. 

The above mentioned properties are not enough to describe interactive 
systems, not only because the idea of modularization is old and imported by 
the traditional programming approach, but also because, in this way, many 
systems, such as the Unix operating system, may be classified as interactive, 
or highly interactive, because of its inherent mod ularization. 

In fact, the main consequence of mod ularization is the feedback, the 
fact that the user can have an immediate knowledge about the computer 
answer to his previous input. Such feedback is the computer answer to the 
execution of a module and it is not the final result of the whole computation, 
but instead any feedback represents a partial result. 

For this reason, operating systems without an immediate communicated 
reaction to any user action may be considered simply as reactive systems, 
not interactive ones. But, since by employing some suitable commands, the 
user can have some information on the system state, he can have a kind 
of indirect feedback, for this reason such operating systems may also be 
considered interactive, but with a very low level of interaction (as Unix). 

The role of interactive systems changed with respect to the employment 
of traditional computers. In fact they are not used anymore for numerical 
computation only, but particularly as a tool which helps users in their daily 
work; which allows communications and cooperation between users (also 
far located): which may be employed as a navigational tool to explore the 
system. 

Comparing the traditional way of computing and the one performed with 
interactive systems, in the last we no more have an initial and a final state 
of the computation but, if vve consider the initi"aJ state as the opening of an 
application or file, and the final state as its closing, in interactive systems 
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we also have a lot of intermediate states: the partial results of the computa­
tion. Moreover, the interpretation of the partial results (pragmatics) is very 
important during the interaction because, depending on those, the user will 
decide which will be his next action. 

Furthermore, it is also important for the user to obtain a computer an­
swer to his input in an acceptable amount of time. Also for traditional 
programming, timing aspects are important in order to reach the end of a 
computation (the result) as soon as possible. But in interactive systems a 
delay in answering not only can annoy the user, with a consequent change 
of his attitude with respect to the computer, also inft uencing the usability of 
the application with which he is working, yet it can also cause a breakdown 
in interaction [30]. 

As mentioned before, the aim of interactive systems is different with re­
spect to traditional ones, and special attention is given to the fact that they 
allow the user to naviga,te through the system. Employing the traditional 
approa.ch, not only there is only one user, the programmer, but also his ac­
tivity is totally pre-planned, since every forseen action is represented within 
the code and the user can not modify the program execution: The visual 
approach, instead, combilied with direct manipulation, allows the USer to 
have an exploratory attitude while interacting. In this way the user can 
have information on how the system is functioning and on what he can do 
when using such a system. 

The ability of the user to navigate through the system allows him to have 
more information on the system functionalities, being so able to employ it 
correctly. \Vhen the user does not know how the system is functioning, he 
cannot do prediction on its behaviour: this means that the system is non­
deterministic from the user point of view. Moreover, because interaction is 
driven by users and there is not a physical law which controls the human 
behaviour, the interaction is non-deterministic, even if the computation is 
still deterministic. Since there are two communicating partners in HCI, non­
determinism is double: from the computer point of view, when it is not able 
to foresee human beha.viour, and from the user point of view, when he is not 
a.ble to foresee the system behaviour. Aspects of non-determinism will be 
discussed in Chapter 4. 

\Vithin an environment in which the user at any step decides the way to 
be followed, he may realize immediately whether the last performed action 
is wrong or not, that. is whether the last reached state is the expected one 
or not. If not, in order to repair the error, the user needs a system function 
which a.llows him to delete the effect of the last performed action(s), so 
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reaching a past state. 
The user can realise that the reached state is wrong if he knows how 

the system is functioning. If he does not know it, the user can then exploit 
the visual approach combined with direct manipulation in order to navigate 
through the system. In this case he cannot realise if the reached state is 
wrong or not, but he can decide if the reached state is useful or not to him. 
In case it isn't, the user needs to change the direction of interaction, going 
back in the interaction history and following, from that point, another way. 

If the user thinks he knows how the system is functioning, but he reaches 
a state that is different from the one he was expecting, then there is a 
mismatch between the two semantics, one from the user and the other from 
the system point of view. In this case, a system function which allows the 
user to reach a past state, not only allows him to repair errors, but also 
increases his knowledge on the system behaviour. 

At this point, the importance and the usefulness of a specific recovery 
function to be applied after any feedback is quite clear: the undo functions. 
Such undo is explicit when an Undo function is explicitely available on the 
interface of the application software with which the user is interacting, im­
plicit when it is possible to obtain the same effect of an explicit undo, but 
by employing other interactive functions. 

Last, but non least, there are usability aspects [.5]. While in the Sixties 
and Seventies the usability of an application software was a desirable, but not 
necessary quality, since the Eighties usability becomes a compulsory feature. 
In order to ensure that a system is effective, efficient and easy to use [.52], 
real users have been more and more involved in the system development. 

Figure 2.6 collects all the above mentioned properties. Such properties 
are qualities, attributes, internal code and system structures, ... but there is 
only one system function which characterizes interactive system with respect 
to the traditional ones: the Undo function. Being linked to the feedback, 
undo may be present only in interactive systems, while in traditional ones 
we can have only recovery functions (see Chapter :3). Moreover, by allowing 
the user to have more information on the system behaviour (when the user 
navigates through the system) and/or on its internal structure (when there 
is a mismatch between the user and system point of view), undo allows the 
user not only to delete the effect of the last past action(s) but also to handle 
and resolve non-determinism during interaction. In the following Chapters, 
undo will be deeply discussed, initially as a system function from the user 
point of view, and, successively, discussing its formal properties. 
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Figure 2.6: A comparison between traditional and interactive systems along 
a set of significa.nt properties. 



Chapter 3 

Recovery Functions 

Undo is a special kind of recovery function. Since it is strictly related to 
the feedback that a computer provides to any user input, we can talk about 
undo only in interactive systems. 

A differentiation between reactive and interactive systems is proposed 
and, for both, recovery functions are discussed. Such functions are ordinary 
recovery functions, implicit and explicit undo. 

A lot of emphasis will be given to the automatic recovery functions in the 
databases environment, in order to introduce the definition of checkpoints, 
necessary in the following Chapters to discuss in depth the undo function 
and its internal structure. 

Finally, in the last Section, undo in collaborative work will be introduced 
in order to provide a description of undo also in a multi-user environment. 

3.1 Different kinds of recovery functions 

Much work has been done on the undo, but until now it is not very clear how 
we have to deal with it and which way has to be followed when developing 
an interactive system. Really, unclo. represented a big problem since the 
beginnig of the use of computer [4.5], also for systems of the 'old generation', 
used particularly for computational problems, and very far from the idea of 
interaction which actually is natural while using a computer. 

But what is the undo'? Is uncia a function, a command or whatever'? In 
[3] Abowd and Dix make a. clear distinction of the meaning of undo from 
the user and system point of view. From the system point of view, undo is a 
function, and as one, does something; from the user point of view, undo is an 

41 
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intention, the intention to recover a past situation. This recovering could be 
done employing any system function, not only undo. Nevertheless, it would 
be useful for the user to have a suitable tool helping him in pursuing his 
aim. This tool, as we will see in the following, is the explicit undo function. 

An important feature of RS in computing is that they provide functions 
(manual and/or automatic) which allow to repair errors whatever they oc­
cour. These functions are usually called recovery junctions, because they are 
used to recover a past state. 

The idea to have a computer provided with a tool which allows to change 
the past actions is not new. Turing himself in 1937 described an hypotetical 
machine able to perf 0111 any symbolic computation that a mathematician 
can do with paper, pencil and rubber (from [84], pag. 84). Actually, we 
have different kind of recovery functions, depending on how, when and on 
which objects each one of them acts. Any function which changes the system 
state from the actual to a previous one, is a recovery junction. If the user 
can change the state by himself while interacting, we are in the presence of 
undo junctions; This undo is explicit (see Section 3.4) when it is available 
on the interface. as a menu item or as a button, it is implicit (see Section 3.3) 
when it is possible to reach a past state by using some interactive system 
functions, but not an explicit undo. 

In HCI we can distinguish two kinds of interaction: interaction with the 
operating system and interaction with an application software. When a user 
is interacting with an operating system, he is acting at the file level, i.e. the 
objects he can handle are files. When he is interacting with an application 
software, the object of interest is the content of a file. 

In RS only ordinary recovery functions are available. At the file level, 
ordinary recovery functions and implicit undo are available. Within an ap­
plication soft,vare, bot.h implicit and explicit undo are available. Morepver, 
within an applicat.ion software it is also possible to perform any ordinary 
recovery function since, by applying some system functions, the working en­
vironment may be changed, moving from the application level to the file one, 
in which any ordinary recovery function may be used. 

The above considerations allow us to refine the hierachy of interactive 
systems proposed in t.he previous Chapter by differentiating HCI in HaS I 
(Human-Opera.ting System Interaction) when interacting with an operating 
system, and HAl (Human-Application Interaction), when interacting with 
an application software. The resulting hierarchy, based on the availability 
of recovery functions, is shown in Figure 3.1. 

Considering the different kinds of recovery functions and the just pro-
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Figure :3.1: The hierarchy of reactive systems in computing. 

posed hierarchy, the following proportion holds: 
Recovery Functions: RS = Implicit Undo: HOSI = Undo: HAl 
In the following Sections, recovery functions, implicit and explicit undo 

will be discussed. 

3.2 Ordinary recovery functions 

When we talk about the possibility to reach a past state in a reactive system, 
we mean the possibility to handle data that have been already used. In order 
to do this, it is possible to employ two kinds of recovery function: one is 
manual and the other is automa.tic. 

Manual recovery functions are system's functions activated by humans; 
even if there is a human, there is communication, not interaction, between 
him and the system. This is due to the amount of time which elapses be­
tween user-action/computer-reaction a.nd the following user action. A typ­
ica.l manual recovery function is given by the functions backllp and restore, 
used respectively to back up data on secondary storage, and to restore them. 
The backup function copies the file(s), provided as input to the function it­
self, from the disk to a secondary storage device (generally floppy disk or 
magnetic tape). If, while vvorking, the user realises that his data are not 
correct, for problems due to the computer or simply because he realises that 
there is a mistake in what he is actually doing, he can re-use the old data 
saved by the backup. To do this he can employ the restore function, that 
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copies the data from the secondary storage, used for the backup, to the disk. 
The time which elapses between the two actions backup/restore is usually 
long (weeks, months or years!); for this reason we have symply reaction, not 
interaction between a user and an operating system when employing such 
recovery functions. 

Mechanisms for automatic recovery are system programs that check the 
system status: if they found inconsistencies, they try to resolve them, chang­
ing the actual system state into the last right one. 

An example of these functions is represented by the field of database 
systems [11]. Broadly speaking, we can say that the scope of the databases 
is the data storage and retrieval, mantaining data consistency. If a datum 
is added to the database -removed or updated- in order to mantain data 
consistency, the sa.me modifica.tion has to be done at any occurrence of the 
same datum in the database. This means that a logical operation may 
be composed by more than one instruction. The collection of instructions 
necessa.ry to perform a single logical operation is called transaction [82]. 
Actually, we can see a transaction as a sequence of read-write operations, 
plus a "label" (abort or commit) to indicate the result of the transaction. 
The meaning of a cOl71'171.itted transaction is that the transaction terminated 
successefully, while the meaning of an aborted transaction is that some logical 
error occourred during the transaction. Since the data resides in the stable 
storage, while any modification is done in the volatile storage, it is important 
to save in the stable storage all the modifications caused by the transaction. 
To this aim, periodically, there is a checkpoint, that is the new value of the 
data. will be saved in the stahle storage. 

If a transaction a.borts, or a system failure occurs, some data may have 
been updated and some other not, because of the incorrect execution of the 
transaction: for this reason it is necessary to restore the data to the value 
that it had before the transaction started. In this case we say that the 
transaction has been rolled back. In order to restore a previous situation, 
it isnecessa.ry to mantain informa.tion regarding all the modifications done 
during the execu tion of a tra.nsaction. These informations are collected, as 
a sequence of records, in a, da.ta structure called log. Before a transaction Ti 
starts its execution, the record < Ti stw,ts > is added to the log. Then, for 
a.ny write opera.tion, a record is added to the log, manta.ining information 
on the name of the transaction, the name of the data item, the old and new 
values of the data. The write is executed after the correspondent record 
is added to the log. After any checkpoint, a < checkpoint > record is 
added to the log. If the transaction Ti terminates successefully, a record 
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< Ti commits> is added to the log. 
If the system has a crash, we may be in one of the following three possible 

cases: 

1. the record < Ti commits > is present in the log before the record 
< checkpoint> , this means that all the updated have been recorded 
in the stable storage and there is no need to redo, that is to perform 
the transaction again; 

2. the records < Ti starts > and < Ti commits > are both present in 
the log after the last checkpoint, so the effect of the transaction has 
not been recorded in the stable storage and the transaction has to be 
executed again, that is the system invokes the redo procedure; 

3. the record < Ti starts> . but not < Ti commits >, is present in the 
log before the checkpoint, then some data have been updated in the. 
stable storage and some not; so, in order to maintain consistency, the 
undo proced ure is invoked to recover the past value of the data. 

The undo proced ure removes the effect of the last transaction if not all the 
da,ta have been updated in the stable storage. Naturally, the implementation 
of the undo depends on the kind of the application software, but the meaning 
of the word "undo" is the same as in the interactive application, i.e. to cancel 
the effect of a performed action. In this case, to delete the effects of action(s) 
performed after the checkpoint. 

The redo procedure executes again a transaction whose effects have not 
been recorded in the stable storage at all. There is no strict connection 
between undo and redo, in the sense that redo is not the inverse of undo, 
but there is a loose connection among them, since undo a,nd redo are related 
both to transactions "not committed" and "not stored'. 

The procedures "undo" and "redo" above mentioned are recovery func­
tions, not undo functions, as it will he explained later in the following Sec­
tions. In this case they are automatic functions; it is the system that decides 
when and \vhether to apply them . 

. 3.3 ll11plicit undo 

When a user is interacting with an operating system, as for example the 
Macintosh one, he has an immediate feedback (indirect as in the case of the 
Unix or direct and immediate as in the 1hcintosh environment) for any of 



46 CHAPTER 3. RECOVERY FUNCTIONS 

his actions. Because of the feedback, the user can immediately realise if the 
reached state is wrong or not. In case the reached state is wrong, he can 
use some system functions to cancel the effect of a past action. This may be 
done implicitly, in the sense that no system function is explicitly available 
allowing the user to revert the effect of an action he has performed. For 
example, in the Macintosh environment, if the user has just moved a file 
from a directory A to a directory B dragging an icon between two different 
windows, and he wants to revert this action, he cannot use the explicit undo 
function because it is not available on the menu, but he has ~o drag the icon 
from the actual window into the old one, so he has to perform the inverse 
operation. Also for an Open (file) or Close (always file) function an explicit 
undo is not available, but in order to delete the effect of an Open, the user 
can perform a Close and vice versa. Confirmation boxes are also examples 
of implicit (mdo. A common example of confirmation is after an Exit, when 
a dialogue box Exit now? with 'Exit' and 'Cancel' as option is opened. 
Pressing the 'Cancel' key the user can implicitely undo his Exit action. 

At the file level it is ea.'3y to delete the effect of a performed action 
using the implicit undo. Why implement an explicit undo, which could be 
very espensive in terms of impleri1entation effort, memory and execution 
time required, when it is possible to obtain the same effect without any 
extra memol:y or programming effort, and, particularly, in a way which is 
immediate and easy to the user? This is the philosophy that is behind the 
implicit undo. However, there are functions for which an implict undo is not 
availa.ble. An exam rHe is given by fu nctions which allow the user to have more 
information on a file or directory. Since the user is receiving information, this 
action cannot be deleted, because it is not possible to remove information 
from the user knowledge. The change should be done to the user's knowledge, 
not to the object which is still the same. The fact that functions which allow 
the user to have 1110re information are not undoahle in some sense is natural 
and useful. Conversely, it is not very usefull that "delete a file" has no undo, 
neither implicit nor explicit i . 1'Iost of the actual systems ask a confirmation 
before deleting a file (as the Empty trash function),btit a confirmation is not 
enough, since a user could make a. mista.ke and, non intentionally, remove the 
file. However, being HSOI ~ RS, the user can apply a recovery function 
(backup-restore), provided that he has a copy of his file ..... 

l..In the Macintosh em'ironment, the deleting of a file is done by moving the icon, 
represent.ing the file, from his position int.o tbe trash (assuming that it is not yet in the 
trash!). This act.ion has as implicit. ui1do - moving the icon out of t,he trash. The Empty 
trcish function, aft,er confirmation, effectively. deletes the content of the trash. 
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Some operating systems also offer another kind of implicit undo, that is 
the Stop function. Since the main feature of interaction is the immediate 
feedback, the user may sometimes realise that his last performed action is 
wrong before that the new state has been reached. A typical example of this 
is given by a double click on an icon producing the opening of a file or of an 
application. The Stop function, allows to stop the running process without 
waiting until the application is opened in order to close it (Netscape has such 
a function). 

3.4 Explicit undo 

Usually, when we are interacting with an application software, an undo func­
tion is available on the surface as a menu item or as a button. Such a function 
is explicit, since the user can identify it (by reading the name or by recog­
nising the icon) and employ it when necessary. 

The functions belonging to the set of explicit undo are undos, redos and 
mechanisms which allow the user to browse the past history. The plural 
(undos, redos, browse mechanisms) is used because we can have different 
implementations of undo functions, depending on the kind of the application 
software. Undo functions are usually classified into two groups, one for which 
undo is self-appliable (see Chapter.)), that is the effect of an undo may be 
cancelled applying a following undo (flip undo), and the other for which 
undo is self-appliable, that is u nelo of undo may be used as a backtrack tool 
(backtrack undo) [.56]. 

Flip undo is employed in the most popular ~v1acintosh and Windows ap­
plications: the user may cancel only the effect of the last performed action. 
If no redo function is available, a subsequent invocation of an undo, immedi­
ately after a previous one, has no effect. Nevertheless, if redo is available, it is 
possible to restore the state into which the system was before the invocation 
of the first undo of the eventual sequence. 

Suppose, for example, that a user is working with a word processor and 
he is writing the sequence of characters ABC D E. The typing of any 
character may be considered as an action, so the action history is given by 
the same sequence. The invocation of the undo modifies the history in A 
BCD; if no redo function is available, then any other undo invocated at 
that state is idem potent. If a redo fu llction is available, as an explicit redo 
or as the unclo of undo, then the user can reach again the previous state 
modifying the historjr in ABC D E. This is simply an external behaviour, 
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by considering the single undo from the user's point of view. We really 
need to have more information on the system state. This situation, together 
with the backtrack undo, has been introduced in [56] and will be plentifully 
discussed in Chapter 5. 

With the backtrack-undo we intend a kind of undo which allows the user 
to delete the effects of the past user's actions starting from the last performed 
one. The iteration of undo may be employed as a backtrack tool which allows 
the user to go back along the action history, until reaching eventually the 
initial state. The backtrack-undo is used in many popular application, such 
as N etscClpeTlIf and Micl'osojtWol'd™ 6.0. In the situation of the above 
mentioned example, the successive undo invocations modify the history in 
this way: ABC D, ABC, etc. until, eventually, reaching the initial state. 

Besides the explicit undo, any other system function that allows the user 
to reach a past state is implicit unclo. Consider, for example, again a text 
editor, in which, after having typed a word, it may have the same effect to 
perfori11 an explicit undo, or to select the word and perform a Clear, or to 
select the word ancl type Delete, or directly type Delete as many times as 
the number of charact.ers to be deleted. 

In HAl the undo function assumes a very important role, more than in 
RS or HOS!. In fact, its importance is clue to the feedback. The more the 
feedback is immediate and evident, the more it is important for the user 
to have a tool which allows him to recover a past state. The fact that the 
user can employ the unclo, allows him to navigate through the system in 
a comfortable and confident way, since he knows that, if he performs some 
mistakes, he can COI'rect them. So unclo seems to be a magic tool, which 
increases the power of interaction and the user thinks he can do everything, 
because, if he is wrong, he can use undo. In practice it is not so, and it 
often happens that when the user tries to perform undo, this function is not 
available at that time. 

3.5 Undo in collaborative work 

Undo functions, as vve will see in the following Chapters, are very complex 
functions and, for this reason, it is better to analyse them starting from a 
single user environment. in which problems of concurrency and conflicts for 
the resources are reduced. In this thesis, undo in collaborative work will not 
be deeply discussed. but, in oreler to provide a wide description of undo in 
different context.s, \\'(' a.re going to shortly introduce it. 
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With the term collaborative work we intend at least two users that share 
data and cooperate through a computer. In this case the users may have 
problems of resources, if both of them require access the same data at the 
same time; problems due to delays, if the users are distant and one of them 
tries to update a datum which really has been already modified by another 
user; problems due to the undo. In fact, after employing undo, which one 
will be the deleted action? The last performed action, but performed by 
which user? Or the last performed action in a global sense? The answer to 
these questions is given by the kind of undo implementation, which may be 
global or local. With local undo, any user has an 'independent working life' 
and the invocation of undo removes only his last performed action, while 
with the global undo the last action performed in all the document activity 
will be undone, independently from which user performed it. The global 
undo seems to be easier to implement, since the system needs to keep trace 
only of one stream of user's actions, while for the local undo the system 
needs to keep trace of as many streams of user actions as the number of 
users. Problems related to undo in collaborative work have been analysed 
in [72, 3, 89]. 

In [72] the authors suggest an undo which is neither local nor global, but 
selective. \Vith the selective undo [12] a user chooses the action to delete. 
However, his choice cannot be done arbitrarily, because a past action can 
have had consequences on the following, always past, actions. If an action 
A precedes an action B and they are independent, in the sense that A does 
not influence B and the execution order is not important, then the user can 
select A, can move it from the actual position in the history to the last one 
and finally can apply the global undo. Moreover, the user has to be sure 
that no other user is working using the action he is interested in undoing; 
for this reason, some exclusion mechanism is required. 

Exclusion mechanisms are discussed in [3], in which the authors suggest 
another solution to the undo problem in collaborative work. They suggest 
the implementation of a local undo. so that any user can know (this happens 
whenever he knows how and on (Chat undo is functioning) what he is undoing, 
with the addition of some exclusion mechanism in order to resolve conflictual 
situations. 

\Vith the exclusion mechanisms at any time, depending on the necessary 
operation, only one user is able to update the data. Such an exclusion may 
be controlled by a mechanism of explicit or implicit lock. 

If the cooperating users a.re working with a text editor, with explicit 
locking, a user that has explicitl~' locked a portion of a document, performs 
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his update and then releases the document. During the time in which the 
document is locked, no other user can access the same resource. 

With the implicit lock, the locking of a portion of text is done by the 
system when a user starts to update it. When the user starts to do something 
not involving the locked text, or after a timeout, the system releases the lock. 

Another exclusion mechanism is represented by roles: each user assumes 
a ,role with respect to each object of the document. Such roles may be author, 
co-author, etc. Depending on the roles, a user can read, write, modify the 
data. 

Finally, the third analysed exclusion mechanism is represented by copy­
ing. By doing a copy of the object of interest, any user is working on it 
as in the single-user environment and, being private, there are no conflicts 
of concurrent accesses to the same resources. Of course copying should be 
done with locking, othenvise more users could have also different copies of 
the same data and may try to modify them concurrently. 

Problems typica.l of collaborative work may be also found in a single user 
environment: it suffices to think about multi-window systems. A typical 
example is represented by the word processor Word 5.1. Suppose 'that a 
user has opened two files, using two different windows, A -and B, in Word 
5.1. Suppose that he performs an action in window A and then he simply 
changes window, making B the working window but without performing any 
action on it. If he performs undo, the last active action (for a definition of 
active actions, see Chapter 4) will be undone. In this case, the last action 
was in A, so the system changes the working window and deletes the last 
performed action in A. The consequence of this global undo is to disorient 
the user, since he thinks the undo is acting only on the working window, i.e. 
the user is thinking in a "local undo" mode. 

Multi-user environments are open systems. Their behaviour is extremely 
difficult to predict, moreover such difficulty is increased by the presence of 
humans that are unpredictable. Undo, as we will see in the next Chapter, 
may help in handling and reducing unpredictability. From the user's point of 
view, a local undo is the most easy and natural kind of undo in collaborative 
work. So it is not a S\l rprise that the successive release of Word 5.1, Word 6, 
has been improved also in implementing a local undo instead of the global 
one. 



Chapter 4 

Dealing with undo 

In this chapter we are going to take into account the unpredictability and 
non-determinism in interaction. \Vhen a user is in control of his dialogue, 
that is he knows the system state and the system behaviour after any user 
action, then the interaction is predictable. Undo functions, implicit and 
explicit, help the user in handling non-determinism when he is employing 
such functions as navigational, tools. and/or in reducing non-determinism 
when he is employing them as recovery functions. From the user's point of 
view, non-determinism in interaction is seen as the risks the user can face 
while interacting. Undo, the explicit undo, is a powerful tool to reduce such 
risks in interaction. Unfortunately, not all the functions at the application 
level may be undone; moreover, Undo may behave differently in distinct 
situations. The result of this, is that Undo also adds risk in interaction: the 
more powerful the system, the higher the risk! 

4.1 Unpredictability of interaction 

Predictions have always been very important to humans. This happened 
and happens because, in order to predict something, it is necessary to know 
the object of the prediction, and such a knowledge is, in some sense, a form 
of control, of power. For a human, a prediction about something is the 
expression of his power on that thing. It is possible to use such a knowledge 
in order to exploit the resources of the world to which the knowledge itself 
is related. It is easier to do predictions when science is involved, as for 
example in predicting the return of the Halley comet, or when there will be 
a high or low tide. It is possible to do very precise predictions in a closed 

51 



52 CHAPTER 4. DEALING WITH UNDO 

world, controlled by mathematically described physical laws, because these 
are independent from human behaviour [8]. But when humans are involved 
in something, it is not possible to do predictions any more. Human behaviour 
does not follow a physical law. From a human's point of view, we say that 
something is non-deterministic when it is unpredictable. 

Within the computation theory the word non-determinism represents the 
fact that, starting from the same state, it is possible to perform the same 
action in more than one way, so reaching different states. The behaviour of 
a non-deterministic machine may be well modelled by a tree, in which any 
node represents a state, and more than one arc with the same label (all the 
arcs with the same label represent the same action) may depart from the 
same node [78, 47, 60, 49, 14]. This means that, from the same starting 
state, performing the same operation; it is possible to reach different states 
following different paths along the tree. Any branch of the tree represents a 
deterministic computation, but it is not possible to foresee -a priori -which 
branch will be covered. The unpredicability of a non-deterministic system 
is a consequence of the fact that at any branching point the system decides 
'which is the way to follow. 

The behaviour of an interactive system may also be modelled with a 
tree, in which any node is a state and any arc is a transition between two 
states. In this representation, that we can call 'interaction tree', we can 
neither represent concurrency aspects (as it happens by employing STN) 
nor cycles, but this choice is necessary in order to do a comparison between 
an interactive system and a non-deterministic machine. 

In interactive systems, at any state the user can perform an action among 
those belonging to the set of allowable actions for that state. The choice of 
the action depends on the user's needs, skill, aim, etc. In the 'interaction 
tree' we can have more than one arc leaving from the same node, any of 
them representing an allowable action, but each arc has a different label, 
because the computation is deterministic. 

Borrowing "non-determinism" from the theory of computation, we can 
sa.y that we have non-determinism in Hel because at any node we can have 
more than one a.rc leaving a.nd it is not possible to foresee which branch in 
the tree the interaction will follow, i.e. it is not possible to fully foresee the 
system behaviour. 

Since humans playa role in Hel and they are unpredictable, the result­
ing interaction is non-deterministic. and, since humans are present within 
Hel having a dOll hIe role as that of any partner in a communication (Le. 
as a. sender when they "say" something, as a receiver when they "obtain" 
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something) we have a double non- determinism in interaction: one from the 
computer point of view (when the user is a sender), the other from the user 
point of view (when the user himself is a receiver). 

We have non-determinism, or, as Wegner says, indeterminism [87], from 
the computer's point of view when the computer is not able to foresee the 
user succeeding action. 

Since interaction is driven by the user, the branch to follow in the 'in­
teraction tree' is not previously chosen, but it is created at any node by the 
user depending on the feedback, his aim, knowledge, experience, ... Such 
unpredictability may be reduced if there are good task and user models: 
in this way, by knowing the task, the user's aim and his knowledge on the 
system, it is possible to do some prediction on the sequence of user actions, 
and, consequently, on the computer behaviour. Nevertheless, a user could 
perform some action not necessarily logically linked with the step foreseen 
by a task model; sometimes prediction may be right, sometimes not, always 
because human behaviour does not follow a mathematical law. 

From the user's point of view, a definition of non-determinism is slightly 
more complex. \Ve have non-determinism when a user does not know the 
system behaviour, so he cannot perform a prediction. In this case the user 
can gain information on the system behaviour by navigating through the 
system itself. The choices of which action to perform are generally based on 
previous knowledge about other systems. 

Moreover, there is also non-determinism when a user thinks he knows how 
the system will behave after his input. but the computer response is different 
from the expected one. In this case, there are inconsistencies between ~he 
user's and system's point of view: the system may appear non-deterministic 
simply because the user hii11self has not enough information on the system 
state and on how it really behaves under the surface of the application soft­
ware. In both cases, undo functions playa basic role in interaction, in order 
to allow the user to handle and reduce non-determinism. 

Finally, another example of unpredictability in interaction is represented 
by the fact that in HCI the world is not closed, in the sense that it does not 
involve only the com pu tel' and the user, but, as said in Chapter 2, the system 
is composed by the computer and all the entities, internal and external to it, 
which are able to give, and/or react to, external stimuli. This means that we 
also have to consider printers, elements on the net, ... For this reason, even 
if the user is following the task model step-by-step, something external to 
the application (but internal to the system) may happen (as a system crash, 
problems with printers, net, ... ), disallowing prediction. 
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4.2 Non-deterlllinism fronl the user's point of view 

In the previous Section, it has been said that the knowledge on an object 
represents for the human a kind of control, of his power on the object itself. 
While interacting with a computer any user would like to feel in control of 
his dialogue. In order to do this, Cole, Lansdal and Christie [21] suggested 
that any user should be able to answer the following questions: 

1. vVhere am I? It is important for the user to have information on the 
state that he has reached. This information is provided by the feed­
back. 

2. How did I [jet here? Changes on the interface after the execution of a 
particular action allow the user to esta,blish a causality link between 
that action a.nd the happened cha,nges. This information is also pro­
vided by the feedback. 

3. What can I do? The understanding of the current system state allows 
the user to know the range of actions that it is possible to perform in 
that state. This is a direct consequence of the answer to the q1,lestion 
Where am [? 

4. WheTe can I go next? If the user has an aim to pursue but he cannot 
perform a needed action in the current state, then he needs to change 
state by reaching a suitable one (reachability). In order to do this, 
the user has to be able to navigate through the system. This ability 
is given partially by the feedback and partially by the possibility to 
perform predictions, basing the last on his previous experience and 
knowledge a.bout similar systems. 

Analysing the answers of the four above questions, we may note that 
the answer to the first one presupposes a knowledge, at least partial, of 
the system state; the answer to ,the fourth question implies a knowledge of 
the system behaviour. while the answers to the second and third questions 
require a knowledge of both system state and behaviour. This means that, 
in order to re;:dly feel in control of his dialogue, the user basically needs to 
know the system state and the system behaviour after anyone of his action. 

From the user's point of view, the system state is what he can see on the 
interface of the system with which he is interacting. Actually, the system 
state a.lso has intel'liai components and the user cannot have all the infor­
mation on them. However, llsing some interactive functions, such as Print 
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Preview, Show~, Word Count, Show Clipboard, etc., he can find some pecu­
liarities about the system internal structure and state. Also the knowledge 
on which actions a user can perform at each state is part of the system state. 

The user knows the system behaviour if he knows how the system exe­
cutes an action, that is its semantics, and which state can be reached after its 
execution. However, since the visual approach allows the user to have a fruit­
ful interaction without any particular knowledge on the system behaviour 
under the surface, then we can say that a user has a good knowledge on 
the system behaviour if he knows simply which state can be reached by per­
forming an action, without having a deep knowledge on the semantics of the 
action itself. 

If a user knows which state he has rea,ched, the actions that he can 
perform and which state he can reach, by perfoming the chosen action, then 
the system would be totally deterministic, the user could do predictions and 
feel totally in control of his dialogue. But, since there is not a full knowledge 
of the system state and of the semantics of the actions, it may happen 
that some inconsistencies arise between the user prediction and the system 
behaviour. Some of such inconsistencies may be resolved by employing undo 
functions, so allowing the user to be more in control of his dialogue. 

Moreover, if there is not a full knowledge on the system behaviour and the 
user is simply navigathing through it, without any specific aim to pursue, 
then undo functions may be used as navigational tools in order to have 
information on the system potentialities. Also in this case, by employing 
undo functions, the user can feel more in control of his dialogue. In the 
following, in order to differentiate the implicit undo form the explicit one, 
we will indicate the first as implicit undo, and the last with Undo. For 
uniformity, we will use words in italics starting with a capital letter for any 
interactive system functions. 

4.3 Meaning of undo in interactive systeuls 

In order to express the importance of undo (not only as a recovery function) 
in interactive systems, a comparison between it and a labyrinth may be 
useful. In fact a, labyrinth is particularly suitable to highlight the exploratory 
aspects, which differentiate interactive systems with respect to traditional 
ones. If we imagine an interactive system as a labyrinth, we find ourselves, 
while walking through it (that is. while interacting), in one of the following 
situations: 
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a the user' aim is to reach the centre of the labyrinth; he knows the right 
way but he makes a wrong tour (slip); 

b the user's aim is to reach the centre of the labyrinth; he thinks he knows 
the right way but he is not able to reach it (mismatch between user 
and system model); 

c the user stopped at a crossing and wants to try a new path. Iii order 
avoid walking back (in this case to go back is not intentionally but 
only a consequence of a wrong choice) he needs to know his previous 
direction; 

d the user has no precise aim, he is simply walking around the labyrinth; 

e the user's aim is to reach the centre of the labyrinth, but he does not know 
where It is. This means that he has to explore the labyrinth in order 
to reach his aim. 

The points a and b depict that undo functions ma.y be used as recovery 
functions when the user realises that he has reached a wrong state. The 
poiIit c depicts that the explicit undo may be employed in order to have 
more information about the system state. Finally, points d and e depict 
tha,t unclo functions may be used as a. navigational tool. 

In each of the above mentioned cases, both implicit and explicit undo 
play a very important role. Actually, not only Undo allows the user to 
repair an ert'or, if it occurs, by reaching a past state (this is the aim of 
any recovery function), but it allows the user also to handle and reduce 
non-determinism. In fact, when a user is navigating through a system, ex­
ploiting the exploratory aspect, typical of interactive systems, he is enriching 
his knowledge about the system's behaviour. In this case he handles non­
determinism. However, his knowledge is related to the external system be­
haviour, not on the internal system structure or status. Instead, if there is a 
mismatch between the user's and system's model, then an inexact matching 
between the interpretation of the user's action ftom the system's point of 
view and from the user's point of view occurs: this means that the semantics 
of the left hand side and right hand side, with respect to the interface I of 
Figure 2.3, differ. In this case Undo may provide more information on the 
interna:l system structure, so tedllcing non-determinism. 

The main consequence of the above mentioned undo characteristics is 
that Undo allows the user to increase his control during his dialogue. 
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4.3.1 Undo as a recovery function 

After the interpretation of the feedback, the user can realise if the reached 
state is wrong or not. The reached state may be wrong in two cases: 

1. the user knows what he wants/needs in order to reach a given state 
and how to reach it (point a in the labyrinth), but he, unwittingly, 
performs a wrong choice. 

2. the user thinks he knows what he wants/needs to reach and how to 
do it (point b in the labyrinth). but the reached state differs from the 
expected one. 

In the first case, the user recognises, immediately after the feedback, that 
the reached state is wrong and, by employing Undo, he can cancel the effect 
of the last performed action (s), so reaching a previous state. In this case, 
he made what Norman defines as a slip [64]. The slip is an a.cidental error: 
for example, when a user writes a wrong character while typing, because 
his finger is on the wrong key, or when a user clicks on a wrong buttons or 
icons because accidentally the mouse is not in the right position, then he is 
making a slip. This situation is easy to recover. 

In the second case, the user is performing a mistake, i.e. a semantic 
error. This means that there is a different semantics of the same action from 
the user's and system's point of view. The consequence is that there is a 
mismatch between the user and system model. In this case the Undo can 
provide some information about the internal system structure, so allowing 
the user to reduce non-determinism. 

4.3.2 Undo to have more information on the actual state 

While interacting, if the effect of any user action modifies in some way the 
interface (in the broad sense, considering any kind of feedback, visual, audio, 
... ), then the user is able to do a link cause-effect. But if there is a breakdown 
in the interaction, for example if a user stops temporarily his work to have 
a cup of coffee, then when he comes back, he could not remember how he 
reached the current state. For example, imagine a user is working with a 
word processor and in the buffer there is a portion of text that we can call 
A. Then the user selects the portion of text B. His aim is to do a Cut and 
Pa8te in order to move B from its position to the beginning of the document. 
Instead he performs a Delete on the selected text and then goes away for a 
cup of coffee. ·When he comes back, he puts the pointer at the beginning 
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of the text and performs Paste. Result: B is lost (unless selective undo 
mechanisms are available) and A is pasted. This usually happens when a 
user does not have or does not use information on how a state has been 
reached. For a breakdown in interaction, a system function which deletes 
the effect of the last performed action may help in knowing how the current 
state has been reached (point c). Of course, if the user wants to continue 
his interaction from the actual state before he used Undo, he has ,to redo the 
cancelled action. 

4.3.3 Undo as a navigational tool 

The points d and e suggest that a navigation through a system may be done 
without any aim (d) or trying to obtain an aim without any knowledge on 
how to do it (e). 

The point d suggests that an interactive system may be employed by 
the user simply navigating through it, without any aim. In this way, the 
feedback following any action in the navigation, allows the user to have more 
information on the reachable states while interacting. Such information is 
not about internal states and/or about how the system is functioning under 
the surface (i.e. informa.tion about the actions semantics), but on what is 
possible to do and what is possible to obtain with the system. This means 
that the information acquired from the user is broad, but not deep. Since, 
in this way, detailed knowledge about system state and semantics is not 
increased, the user is not reducing non-determinism, but he is handling non­
determinism to obtain a general idea on the system potentialities. 

\\Then a user has an aim to pursue, i.e. a desired state to reach, but 
does not know how, then, exploiting the exploratory aspects of interactive 
systems, he can perform an action among all the allowable ones in the actual 
state. If the reached state is still wrong Dr inadequate to the user, then he can 
perform Undo cancelli ng the last performed action and can try another path 
in the 'interaction trce'. ReasDning in terms of the reach ability properties, 
this means that the user is trying to find a suitable action that, provided as 
input to the comput.er, allows him to reach his aim. The situation in this 
case is very simila.r to the previou~ one (d), the difference is in the kind and 
the way of choice of t.he allowable action that has to be perfDrmed, because 
this time such a choice is influenceci by the user's aim. 
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4.4 Undo reduces non-deterluinis111 

In order to understand the system's behaviour, any user needs to know how 
and on which object any function acts. The word how is related to the action 
semantics, but we cannot talk about the semantics of each interactive func­
tions. In next Chapters we will focus only on the Undo semantics, because 
this function characterises interactive systems with respect to traditional 
ones. 

The words on which object indicate the domain of interest of any ac­
tion. By applying the visual approach. the user generally does not need to 
know how the system behaves under the surface of the application software. 
Unfortunately, all goes well until the user reaches a state that is different 
from what he forsaw, i.e., until there is a mismatch between the user's and 
system's model. Such a mismatch may be due to the choice of an unsuitable 
metaphor to represent visual objects on the interface [.57]' or to a wrong 
evaluation of the action sema.ntics. Since, the visual approach implies that 
the semantics of any system function should be very easy and immediate to 
understand (see Chapter 2), then a wrong evaluation of the action semantics 
may be due to a uncomplete knowledge of the object on which the action 
is working. This mismatch cannot be always resolved by applying Undo, 
because it only cancels the effect of the last performed action(s) and, if the 
mistake is due to a remote action, then, depending on the implementation 
of Undo (see Chapter .5), it is not always possible to cancel it. Some systems 
support selective undo which allows the user to cancel individual past ac­
tions far back in the history. However, Undo can show some aspects of the 
internal system structure, helping the user in understanding the domain of 
interest of system functions. Undo, b~' encreasing the user's knowledge of the 
system's behaviour. may helps the user himself in reducing non-determinism 
in interaction. 

4.4.1 Granularity levels 

During any interaction between a user and a computer. it is important to 
identify the objects which the uspr call handle. because such objects represent 
the data of interest, the data which an action can effect. Following the 
hierarchy proposed in Figure 3.1. we have intera.ction with operating systems, 
in which the objects of interest are files, and within application software, in 
which the objects of interest arp cont.ents of files. But the word 'content' is 
not enough to understand the object which an action effects. So, to better 
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Figure 4.1: This figure is interpreted by the user as a cube, not as a square 
and 5 segments. 

understaJ1d the different objects within the a.pplication le'Vel, we are. going 
to introd uce the granularity levels. 

Within an application software, the levels of granularity are basically 
two, the lowest aild highest, but for each specifie application any numbei' of 
levels between them may be added. 

At the lowest granula.rity level, the data of interest are the elementary 
components present in the application. 

At the highest level, the data of interest are the global content (for ex­
ample all the text of a document) of files, which are made by string(s) of 
elementary components. 

For example, if we are working with MacDraw II, the elementary compo­
nents are the geometrical objects which may be chosen in the palette, while 
the file is made by strings composed by the drawn geometrical objects, In 
this case the string is not linear, but bidimensional, and, for this reason, it 
may be seen as a spatial composition of elementary components instead of 
their linear sequence. In ~'IacDra\V II there is also an intermediate level of 
granularity. Since for the user the spatial composition of some elementary 
components may have a particular meaning, the system provides a function 
(Group) in such a \\'a~' that the user himself is able to indicate to the sys­
tem that the selected components have to be considered as a unique object. 
Figure 4,1 shows that the drawn picture is considered as a cube by the user, 
and as a square and five segments b~' the system. The Grollp function allows 
both the user and the s~'stem to consider the same string with the same 
granula.rity, 

Some applications l11ay al:=;o have an own (or more than one) intermedi-
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ate level, besides that one which may be created by the user. For example, 
working with a word processor, the data of interest at the lowest level are 
the characters which can be typed by using the keyboard, while at the higher 
level the data of interest are the content of files, which are made by combina­
tions of characters. The user may create an intermediate level by selecting 
characters (which, from his point of view, are a portion of a word, or a 
whole word or a group of words belonging to his text, that is of the written 
language he is using), in order to inform the system which is the object of 
the next action. This intermediate level is not persistent and its length in 
time depends on the successive user action. Besides this intermediate level, 
there is also another one, this time provided by the system and the user 
is not explicitly informed about this. While a user is typing, the system 
considers as a single object the portion of text typed between two successive 
events. An event is an action, "'hose name is present in the menu, and may 
be entered by mouse or keyboard. However, also the time may be an event 
defining the end of an object. For example, in Microsoft Word™5.1 , if 
we make a pause of at least 20 sec. while typing, this time is considered 
an event which defines the end of the object. The next typed character will 
belong to a new object. Generally the user does not know the structure of 
the intermediate granularity level, but, since he is using a language (interac­
tion language, and the user does not realise that it is a language) to perform 
his task (which in this case is based on the grammar of a spoken language) 
intuitively he associates a meaning to a string of characters, so creating a 
word of his spoken language. In this way, the granularity conceived by the 
user is different from the one used by the system. If the user perfoms the 
Undo after typing, its effect is to delete the last written object from the 
system's point of view, which, as before mentioned, not always corresponds 
to the definition of object from the user's point of view. 

'When a user is in a constructing phase during his interaction, that is he 
is adding elements to his file (for exam pie, he is typing text or drawing pic­
tures), an eventually differences in the granularity between user and system 
does not effect the following constructive action. But if the user is modifying 
the file, moving or cancelling some of its content, then inconsistencies due 
to the different granularity levels may a.rise. In particular, such inconsisten­
cies are highlighted by the Undo which, showing the granularity of the last 
performed action, increases the user's knowledge about the internal system 
structure, so reducing non-determinism. 
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4.5 but Undo adds non-detenuinis111 too! 

Often, Undo is a very powerful tool, allowing the user to repair an error, but 
sometimes it rnay add confusion in the user while interacting. How many 
times have we tried to perform Undo and, although present on the interface, 
such function was not allowable? Or how many times have we performed 
Undo obtaining something different from what we expected? Such confusion 
is due to the fact that Undo is not as ease as it looks; in fact, it is a very 
complex function and we cannot simply say that it cancels the effect of the 
last performed action(s). The last action with respect to what? Last from 
the user's point of view, that is the last action in the interaction (the last 
user performed action), ot from the computer's point of view, that is the last 
action in the com pu tatioil, the last action which modified the result? For 
example, if, working with a word processor a user types a word, then uses 
the scrollbar and then applies Undo, which action will be cancelled? The 
typing, the scroll or both? The uncomplete knowledge about what and how 
Undo acts, makes its behaviour unpredictable, so adding non-determinism 
in interaction. In the next Section we will explain what Undo acts on, while 
we will dedicate Chapters .5, 6 and 7 to describe how Undo acts. 

4.5.1 Different kinds of actions 

Undo is a special kind of system fUllctioli, since its domain of interest is not 
an object but a COlllllland, and its application cancels the effect of the last 
applied command(s). As said in Chapter 3, explicit undo is available only 
at the application level, so Save, E:tit, ... , (even if such functions are within 
an application software, their objects of interest are files, ilOt their contents) 
and all the other functions at the file level are not undoable in the sense of 
the explicit undo. However, not even all the functions within the application 
level may be undone. 

Until now, we have talked in general about actions, and such actions 
could be ordinary commands or Undo. Since, as said at the beginning of 
this Section, Undo acts on commands, and not all the commands may be 
undone, we would like to clarify which comma,nds are undoable and which are 
not. In order to cia this. we have to talk about different command instances 
and levels. 

A command instance lllay be active, passive or neutral depending on the 
effect that such a. cOll1mand ha..s on the Result and Display in the sense of 
the red-PIE (see Chapter 1). 
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If a command instance modifies both Result and Display, then such in­
stance is said active; if it modifies only the Display but not the Result, 
then such instance is said passive; finally, if it modifies neither Display nor 
Result, then such instance is said neutral. More formally, given the red­
PIE P = < P, I, E, result, display>, assuming that the system, starting 
from the state Sa, by executing the command c, reaches the state Se, that is 
doit(sa, c) = Se, we have the following definitions: 

Definition 4.1 A comrnand instance c is said active 1]: 

1. Sa =f Se; 

2. resu.lt(proj(sa)) =f l'esult(pl'oj(sc)): 

3. display(proj(sa)) =f cZisplay(pl'oj(sc)). 

Definition 4.2 A command instance c is said passive 1j: 

2. l'esu.lt(proj(sa)) = resuli(lJI'oj(sc)); 

3. display(proj(sa)) =f displ([!)(proj(sc)). 

Definition 4.3 A command instancr: c is said neutral if 

1. Sa = s,,; 

2. r'esult(pl'oj(sa)) =result(pl'oj(sc)); 

3. display(proj(sa)) = displ([!)(proj(sc)). 

The same command, applied in different state, may have different in­
stances. For example, suppose that a user, while working with a word pro­
cessor, selects a word, performs a Cut and then performs a Paste. In this 
case Paste has an active instance, since such command modifies both Dis­
play and Result. If the user selects the just pasted word and performs again 
a Paste, then its instance is neutral. since neither Result nor Display have 
been changed. 

At this point we can define a command as active [76], passive [:39, 26] or 
neutral as following: 

Definition 4.4 A command c E C i8 active if there e:rists at least one 
occurrence in which c has an ([dirE instonce. 
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Definition 4.5 A command c E C is passive if there exists at least one 
occurrence in which c has a passive instance; c may have a neutral instance, 
but never an active one. 

Definition 4.6 A command c E C is neutral if there exists at lea.st one 
occurrence in which c has a neutral instance; never c can have an active or 
pass'ive instance. 

Working in Mic/'oBoft W onl™.5.1, example of active commands are 
Out, Paste, Replace, Clear, etc.; example of passive commands are the scroll­
bar, the cursor movement, Outline, Page Layout, etc.; examples of neutral 
command are Word Coltrd, etc. 

In the most common application software, Undo acts only at the level of 
the active commands. If an active comman is followed by passive or neutral 
commands, they are simply skipped. For example, in NliC'l'oBoft Hf ord™5.1, 
if a user, types a word. then, with the scrollbar, changes the display and 
then performs Undo, the effect of the Undo is to skip the scroll bat and to 
recover the situation in which the text was before the user typed the can­
celled word. It is logical to understand why Undo does not act on rieutral 
commands, because the effect of such commands is not to modify result or 
display but to provide information to the user. In some way, it is logical 
also t.o understand why U1U/O does not act on passive commalids; because 
cursor movements, scrollbar, etc. are easy to undone with implicit undo. 
Nevertheless, the passive commands are not always skipped. Consider, for 
example, in Microsoft WOl'd™.5.1 the functions which allow the user to 
change the view of the document (as Outline, Page Layout). Since such 
functions modify the display but not the result, they are passive. In any 
of these modes, the user can edit, scroll and undo active actions, as in the 
nOl'mal mode. \Vhile the user is v.'orking within one of these modes, Undo op­
erates uniformly and consistently. However, when swhitching between them 
the situation is different. If a user, while working in the normal mode, enters 
an active command, and then changes the view of the document applying 
Outline, he cannot perform Undo beca.use the last passive command is not 
skipped. Conversely, if the lIser changes view with the Page Layout, then, 
performing Undo, the last passive command is skipped and the last active 
one is undone. The sit.uation is the same also when moving from the Page 
Layout or Out.iine mod(' to the Normal one. Moving from the Pa.ge Layout 
to the Normal, the last active action done in Page Layout may be undone, 
since t.he change of the view is seen as a passive action. Moving from the 
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Outline to the Normal, the last active action done in Normal cannot be 
undone. Such problems have been resolved in Microsoft Word™ 6.0. 

There are special kinds of active commands as Replace, Character, etc., 
which allows the user to do more than one modification at the same time. 
For the execution of such commands, the user is helped by a dialogue box 
and performing Undo all the modification are undone at the same time. For 
example, when a user closes the Replace dialogue box, after having applied it, 
and performs Undo, then all the modification done with the Replace All are 
undone at the same time, because the system clumps together the sequences 
of active actions requested within the dialogue box and treats them as one. 
The user cannot perform an explicit undo, but only an implicit one, while 
he is in a dialogue box. The opening of a dia.logue box under the menu item 
Edit is a passive command and while it is opened, the user can perform the 
Undo of the last active entered command in the text. Conversely, when any 
dialogue box is opened from the menu item Format, then it is not possible 
to do any operation until the su bmenu is closed. 

4.6 U nda and risky interaction 

In the previous sections, the importance of undo functions (implicit and ex­
plicit) has been introduced in order to draw importance on how the user can 
feel more in control of his dialogue. The implicit undo (as when moving an 
icon from a window A to a window B and vice versa) relies on proportionate 
effort: small actions give rise to small effects (remind that big actions, as to 
remove a file, have neither implicit nor explicit unclo). But what we expect 
when interacting with a comput.er, is to be able to do much very quickly, 
that is to obtain large effects from small actions. Usually, such an increase 
of power is at the application level. but it does not a.lways implies a power 
in interaction too! Really, by increasing the a.pplication power, also the risk 
in interaction increases. Furthermore, an explicit undo may be extremely 
useful to reduce such a risk [:35]. But what is this risk? The first kind of risk 
may be due to the presence of user's errors (slips) while interacting, so the 
Undo can help the user in recovering from errors. t·'loreover, the other risk 
is due to the mismatch between the \I~('l"S and system's point of view on the 
same action. 

Not alway's the presence of [Tilda assures a reliable interaction: in fact, 
it often can make a system more risky. In the previous Section we gave 
an example of risky Undo, when \\"E' said that in i\Iicrosoft l'Vord™.5.1 
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not all the passive actions are skipped when applying Undo. This means 
that the behaviour of this systen'l function may add non-determinism in 
interaction when it is slightly inconsistent. But does it matter? For 99% 
of the time Undo works, this is better than systems where Undo was either 
absent or frequently did not work. Or is it? If Undo works almost all the 
time, then users may become used to it. Indeed, one of the advantages of 
having Undo is that users can take a more exploratory approach to their 
intera.ction, trying out possible courses of action, but thell retracing their 
steps if negative results occur, i.e. their behaviour become more risky. But 
if they become more risky then they are more likely to do things that need 
Undo, and if Undo does not work uniformly then they will have problems 
which would never have occurred if they had been more ca.reful. So although 
('t. 99% effective Undo may not be bettei' than having no Undo at all, there will 
be errors that occur when you have Undo which would not have happened 
if you had never had Un.do at a.ll! 
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Chapter 5 

Reflections on Undo and 
Redo 

In this chapter we are going to take into account characteristics of the 
Un do/ Redo functions in interactive systems. VVe identify the domain of in­
terest of Undo as the command history. Actually, we could have two classes 
of Undo function, one self-applicable and the other not self-applicable. In 
the first case, Undo belongs to its domain of interest and Undo of Undo is it 
is used as the Redo function. In the second case Undo does not belong to its 
domain of interest and the Undo of Undo is used as a backtrack tool. Besides 
this classification, some systems allow also to perform Undo not only on the 
last performed a.ction, but also on a block of n actions. The size of the block 
of actions to be undone is decided by the user or by the system, depending 
on the implementation. Two semi-formal definitions of Undo and a taxon­
omy of interactive systems, based on the Undo granularity and repetition, 
are next proposed. 1!Ioreover, we will a.lso introduce the Redo function. Its 
application domain is not the Undo, but the undone actions. The Redo is not 
exactly the inverse of Undo, there is. instead, an intrinsic causality depen­
dence with the Undo. Two semi-formal definitions of Redo and a taxonomy 
of interactive systems, based on the Redo granularity, repetition and the link 
with Undo, are proposed. Finally, a discussion on reflexivity aspects, reacha­
bility properties and commitment points, stresses the fact that by increasing 
the power of the Undo/Redo mechanism the risk in interaction increases. 
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5.1 The world around Undo 

The issue of Undo in user interfaces has been studied by several authors 
over many years (e.g. [4, 45, 88, 84, 62]). This has included both work 
aimed at understanding the problem, and work on implementation struc­
tures. Despite this, experiments have shown that experienced users of Mi­
crosoft Word,which has a relatively simple and easy to use Undo function, 
still have great difficulty in working out what Undo will do in some contexts 
[66]. Is this because we do not still have a. clear idea of what Undo should 
do, or is it simply that Undo is intrinsically complex? 

This is not simply a matter of theoretical interest. At the time of the 
earlier formulations of Undo, the users of most interactive systems were either 
experts, or at least computer literate. Even if the users of a system with 
complex Undo mechanisms, such as Emacs [83], did not fully understand 
its semantics, at least they were not too intimidated by its often erratic 
behaviour. Now, sophisticated multi-step Undo is available on standard 
office systems such as Microsoft Word 6, and indeed the ability to undo with 
ease (not necessarily with an Undo command) is seen as one of the positive 
key fea.tures of the direct manipulation paradigm [81]. 

But what does Undo exactly achieve'? Since most systems allow the user 
to reach only the previous state, one could think that the Undo is a system 
function which allows the user to delete only the previous action. Some 
systems do not allow to perform the Undo of the Undo, some others allow 
it; in this last case, if it is possible to go back along the past history, the 
Undo of the Undo may he used as a backtracking tool, otherwise the system 
may oscillate between two states. Moreover, some systems allow not only to 
reach the previous state, but a.\so a.ny one in the past history. 

From the above considerations, we can argue that the world around the 
Undo is very confused. Given the range of interpretations of Undo in different 
applications, it is clear that there is not yet a common understanding or 
definition. Its weak definit.ion, including all the above mentioned examples, 
consider the Undo as a system function which allows the user to reach any 
state in the past histor~'. This means t.hat the Undo may be seen as a special 
case of readability [29]. In fact, if, in a system, the readability property 
holds, it is possible to reach, starting from any system state, any other 
state, both the ones previously reached (present in the past actions history) 
or others not yet reached (possible future actions). Therefore, reach ability 
allovvs the user to move in both directions of the action history, past and 
future. The explicit Undo is a s'pecia.\ case of reachability, in the sense that 
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it allows the user to move only in one direction of the action history, the 
past one. 

Among all the functions which a user can perform while interacting with 
a computer, Undo, as we will explain in the following sections, is one of 
the most complex and its behaviour differs from any other system function. 
Particularly, after an Undo is performed, the user may find inconsistent situ­
ation due to the different granularity of the handled data or to the different 
kind of performed actions. This inconsistency arises because Undo shows 
something of the internal functioning of the system, while the user does not 
know anything about it: if the new informa.tion he receives is in contrast 
with what he knows or thinks, he has problems of inconsistency. 

5.2 The script 1110del 

Different formal models have been proposed in the literature in order to 
describe Undo in interactive systems [4, 86,84]. In [4] the authors propose 
a 'script' model of Undo, which we will refer to as the ACS model. This 
is based on three streams of actions: the user history, the active script and 
the pending script. The user history is simply a list storing all the user's 
actions. Sequences of commands produce scripts; there is an immediate 
mapping between each script and a state a.s the object visualised on the 
screen. The active script is the list of the user's entered commands. The 
pending script is the list of the commands deleted in the active script by the 
Undo. 

If, for exam pIe, we a.re working with a t.ext. editor and we enter these 
actions in the user history 'type(hi), type(everybody), Undo', we will have 
this sequence: 

User History type(hi) 

Active Script < tvpe(hi) > 

State hi 

Pending Script <> 

User History type(hi), type(evel')'body) 

Active Script < tvpe(hi), typc(eve,.yIJOdy) > 
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State hi everybody 

Pending Script <> 

User History type(hi), type(everybody), Undo 

Active Script < type(hi) > 

State hi 

Pending Script < type(eve1'ybody) > 

This example shows that in any interaction there are two kinds of history, 
one storing any user action which the user can only increase by perform­
ing actions, the other storying the active script and the user modifcations, 
adding or deleting commands. The role of the pending script is to keep trace 
of the last undone action. If a Redo follows an Undo, then the action present 
in the pending script is moved from its position and is a:dded to the' active 
script, while the Redo function is added to the user history. The Redo case 
is shown in the following example: 

User History type(hi), type(everybody), Undo, Redo 

Active Script < type(hi), type( everybody) > 

State hi everybody 

Pending Script <> 

5.3 Is Undo part of the cOl1ullands' history? 

The difficulties in dea.ling with Undo arise for its cbmplex nature afld struc­
ture. In order to understand how this function acts, it is better to note the 
differences between it and the ordinary commands. Broadly speaking, we 
can divide all the user's actions in two classes: the first is made by all the 
functions which a.re st.rictly related to the user's task; the second is made by 
function(s) which a.llow the user to modify the past interaction [88], that is 
the Undo functiolls (Undo, Ruto 01' browse). 

Indicating with A the set of'user's actions, we have that A = (C u U)*, 
where C is the set of a.llowable commands and U is the set of Undo functions, 
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including all different kinds of Undo (backtrack, flip, etc.), Redo, and/or 
browsing functions. In the case of a single Undo, without any Redo or 
browsing, this sim plifies to A = (C u {Undo} ) *. 

We will use Ha to denote the set of sequences (or histories) of actions 
(Ha = A*), and H for the set of commands histories (H = C*). That is, Ha 
corresponds to the 'user history' part of the ACS model, and H corresponds 
to the commands in the 'active script' or, in other words, the commands 
issued to the system as if there were no Undo. In the sequel, when we will 
talk about the Undo of a command. we will intend Undo of an undoable 
command. 

The subdivision of the user actions into commands a.nd Undo, is naturally 
generated by the different user aim: 

command The user's aim is to modif~' an object. 

Undo The user's aim is to delete a modification, the effect of a command 
on an object. In other words to modify the interaction itself. 

Starting from the above distinction, it is possible to provide a functional 
description of both an ordinary command and the Undo. 

An ordinary command c E C is a function that modifies an object of 
interest, that is, an object directly related to the task the user is performing. 
Such objects are those that are in the state of the system, even if we ignore 
Undo; that is S. The primary purpose of commands is to act on S. This 
can be modelled using the dod function (see Chapter 1). We have that 
doit(s, c) = s', that is, performing the command c we can switch from state 
s to s'. Now, 8' is a new state, typica.lly distinct from all the previous states, 
and both sand s' belong to the set of states S. In the ACS model, doit 
corresponds to the result of the natural mapping between the active script 
ant the actual situation of the document, ignoring the history. Note that 
this doit function only tells us abou t the effect of ordinary commands on the 
state of the system without Undo. They will also have some effect on the 
rest of sa determining the complete behaviour of the system. 

Turning now to the Undo, the object of interest of Undo depends on 
which definition we consider. I-IO\\'(~ver. its data of interest are not the same 
objects on which the commands act. Instead, such data may be commands 
or actions, that is, if we consider Undo without Redo, the application domain 
may be the command history (J-I) or the action history (Ha). 

In the first case, Undo is definded by a furiction U : H -+ H acting on 
previous commands to reverse their effect. In this case, the effect of Undo 
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itself calinot be reversed, since it does not belong to its domain definition. 
Effectively, all past undos are forgotten, except for their effect in having 
reversed previous actions. Such a system cannot have Redo function; Undo 
is not self applicable and Undo of Undo acts as a pure backtracking tool. 

Alternatively, the domain of interest of Undo may be the complete action 
history (from Ha). In this case, Undo can be definded by a function like 
U : Ha -t Ha . That is, the system regards Undo as a commahd. However, 
it is not natural and, in fact, there must be a different system behaviour 
"vhen performing Undo after a command or after a previous Undo. This is 
exactly what we see in all systems with Undo. When the previous action has 
been a command, then we expect Undo to act upon it by reversing its effect. 
In this case, we have doita(s, Undo) = s', where s' is not exactly a previous 
state, but in some sense an eq uivalen t one, because the system keeps track 
of the Undo activity (for example using a boolean varia.ble or the pending 
script). 

When performing Undo of Undo, diffet'ent systems may have different 
behaviour: some of them simply do not allow it, others consider Undo of 
Undo as the Redo functiolf. We will consider Redo later, but the former 
case, of simple single st('p Undo, ca.n be informally described as: 

U (I ) {h if a E C 
. 1 ----.. a = not allowed otherwise 

The peculiarity of Undo, is that it is not a command but a meta-command, 
a.nd, being so, its struct.ure is quite different from the one of the ordinary 
commands. When using Undo as a command, it is self-applicable (Undo 
of Undo as Redo) and some aspects of this reflexive structure are revealed 
to the user, giving rise to problems of inconsistency (as said in chapter 4) 
and even apparent randomness, especia.lly if the user is expecting a different 
kind of Undo behaviour. l\Joreover, since the domain of interest of Undo 
is an action or command history, when using Undo, the user is not simply 
interacting, but instead he is interacting with interaction. 

5.4 Single-action and l111Iltiple-action 

In the previous Section we began to classify different kinds of Undo based on 
whether Undo is self-a.pplicable or not. We have not explicitely considered 
the Redo function. £,,10r('0\;er, we have also been intentionally vague as to the 
"cope of Undo, which va ries markedly between specific Undo systems. This 



, 
, , , 

~.J 

5.4. SINGLE-ACTION AND MULTIPLE-ACTION 73 

~ Repetition Single action Multiple actior 

(i) 
Undo only of the 

( iii) 
Undo of a block 

Single undo last command. of actions. 
Undo of undo is not Undo of undo is 

allowed not allowed 

(ii) 
Undo only the 

(iv) 
Undo a block of 

Multiple undc last command. actions. 

Undo of undo as Undo of undo as 

backtracking backtracking 

Figure 5.1: A taxonomy of Undo function. The rows represent the granu­
larity, the columns represent the repetition of Undo. 

scope has two main aspects. Firstly, the number of times that Undo can be 
applied: single-undo or multiple-undo. where by single-undo we mean the 
ability to apply Undo only once, "while by multiple-undo we mean the ability 
to apply Undo successively. Secondly, the number of actions that may be 
undone at one step: many systems allow only a single action to be undone at 
a time, but other systems allow multiple actions to be undone at each Undo 
step. The latter is a classification based on Undo granularity, that is, how 
many actions may be undone at any step: one or many. In the case of the 
multiple-action Undo, the user 'decides' how many actions to undo at one 
step. In other \'lords, at a low level the system determines the granularity 
of undoable actions, whereas tlte user determines the granularity in terms 
of the number of such actions to be undone. Unfortunately, because of the 
way Undo 'digs' beneath the surface of the system implementation, several 
different sorts of granularity are important and we have to ignore some in 
order to understand others. 

Figure 5.1 summarises a classification based on the above two distinc­
tions: single/multiple Undo and singk/multiple actions. In it we identify 
four classes of systems: 
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(i) single-undo/single-action, where it is possible to apply Undo only on the 
last performed action and the Undo of Undo is not allowed; 

(ii) multiple-undo/single-action, where it is possible to apply Undo on the 
last entered command and the Undo of Undo is used as a backtracking 
tool; 

(iii) single-undo/multiple-action, where it is possible to apply Undo only on 
the last block of 77 actions and the Undo of Undo is not allowed; 

(iv) m.ultiple-undo/multiple-action, where it is possible to apply Undo on a 
block of n commands and the Undo of Undo is used as a backtracking 
tool. 

It is easy to find examples of systems in three of these classes: for in­
stance, the standard single-action Undo (i) is found in many spreadsheets, 
graphic packages and word processors; (ii) describes the behaviour of the 
Back command in HyperCard; and multiple-action/multiple-undo (iv) is 
supported via a pull down menu in \Vord 6. However, systems of type 
(iii), at the top right of the diagram, seem to be absent. Why is this so? In 
principle, it would be possible to produce such a system, but it would not 
be convenient to do so. VVe will see why in a moment. 

One factor that differs in these kinds of Undo is the amount of informa­
tion they have to store ill order to be able to perform an Undo. In the case of 
(i) single-undo/single-action, only the current state and previous state need 
to be stored. Every active command commits the previous one, in the sense 
that they cannot longer be undone. This is a backward commitment point, 
as it limits the amount the system can go 'backwards' in time to previous 
states. In contrast, (ii) and (iv), both of which allow multiple-undo, have 
no backward commitment points; it is always possible to go as far back as 
you like. Among other things, this means that systems of type (ii) and (iv) 
must both store similar amounts of history informa.tion. 

The presence of backward commitment points are bad news for the user, 
as they limit the possibilities for recovery. However, they are good news for 
the developer, as a commitment point limits the amount the system has to 
store and hence the cost of the Undo. In the extreme, storing everything 
can be very expensive (even when implemented carefully using 'deltas'l), 

l'Delta' is a term used in version control systems. Instead of storing every version of a 
document. individually, only some ent.ire copies are kept (often the oldest or most current 
\'ersion) and in addition information i's stored to describe differences between versions of 
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so many systems have slightly weaker forms of (ii) or (iv) where there is a 
limit on the number of commands that can be undone (e.g. one hundred 
commands in 'Word 6), or on the total resources used to store history infor­
mation (e.g. Emacs, which has a large byte count limit). However, we will 
regard these as effectively falling into the relevant category, just as we regard 
a spreadsheet as being able to handle arbitrarily large sheets even there is 
some resource limitation. 

Looking at the concept of backward commitment points, it is clear why 
it is unusual to find systems of type (iii). Such a system would have no 
backward commitment point so long as only ordinary commands were used. 
Similarly, like (ii) or (iv), it vvould, in principle, have to remember the com­
plete history of the interaction. HO\vever, after a single n action Undo, it 
would no longer be possible to go back beyond those n actions. That is, 
the action of doing an Undo would establish a backward commitment point. 
Such a system would have all the disadvantages of (ii) or (iv) in terms of 
potential cost of mantaining history information, while making things worse 
for the user by establishing backward commitment points, reducing the pos­
sibility of recovery. Not surprisingly type (iii) systems are rare! 

The relationship between (ii) and (iv) is also rather interesting. To see 
this, let's consider two informal definitions of Undo: 

Definition 5.1 Undo is a system function which allows the tlSer to reach 
the previous state. 

Definition 5.2 Undo is a system function which allows the user to reach 
any previous state. 

Neither of the above definitions of Undo allows selective undo be con­
sidered exactly an Undo. In fact, after its application, the reached state 
may be not the one previously reached. For example, if a user performs the 
sequence of actions 'a. b. c', anci realises that 'b' is wrong, then he can select 
and delete it. But what he obt.ains is 'a, c", because the execution of 'b' 
may in some way have influenced the following action. And the sequence 'a, 
c" may not be a part of the previous history. 

Conversely, Definition .5.1 clea.rly covers type (i) Undo (single-undo/single­
action) and type (iv) clea.rly falls uncler Definition .5.2. What about (ii)? On 

the document - t.he delt.as. Forward deltas enable a more up-t.o-date version to be recreated 
from an older one. backward deltas allow older version to be recreated from newer ones. 
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the one hand, a single Undo always turns back to the previous state. How­
ever, because the user can apply Undo repeatedly it is possible to go back 
to any previous state: one can always get the effect of a single n-step Undo 
by doing n single-step undos. So, the difference could be seen as one of 
task migration [32]; that is, the same objective can be reached either by the 
user or the system. Furthermore, given that the mapping between physical 
actions and logical actions is rather a matter of taste, one could even regard 
the user pressing the Undo button 11, times as being equivalent to a single 
logical n-step Undo action! 

So, to sofne extent, (ii) and (iv) give the user equivalent power, but with 
a different user interface. In fact, for n-step Undo the user interface issue 
is particularly complex. \iVhen an action is performed one wants to have 
some idea of what the action is going to do (predictability). Similarly, when 
one performs an Undo, one would like some idea of what will happen. For 
single-step Undo this can be difficult, as shown by the study of Wright et al. 
[66]. However, for n-step Undo things are much more difficult. Even if one 
has a. very clear idea of t.he granularity of each command, can one remember 
just how many commands back lies the state one is trying to return to? For 
class (ii) OIle can simply go back until one notices that he/she is in the right 
case, but for n-st.ep Undo it is essentia.l that the system gives some means to 
determine how many steps to go back. For example, in 'Word 6 the previous 
actions are presented in the Undo menu. 

Having an n-step Undo, whether supplied by the system (iv) or by multi­
ple commands (ii), makes it also possible to go back too far by accident. For 
case (ii), one \vould probably notice and, at worst, Undo one step too many. 
In case (iv) the potent.ial damage is greater. For multiple undos, Redo is not 
a luxury, but a necessit~r. 

5.5 Adding Redo 

The raison d'etre of Un rio is the user's need for a function that allows him to 
reverse the effect of a comma.nd, recovering a past situation. This is needed 
when the commanel has been performed a.s an error so that an undesirable 
state has been reached. What ha.ppens if the user realises that Undo has 
been performed in error and ha.s itself resulted in an undesirable state? The 
answer to this question has been the raison d 'etre of the Redo function. 

It is common to consider Redo as the inverse of Undo. Indeed, this may 
be the semantics of Redo when' Undo is applied on a single action. But 
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the meaning of Redo is less clear in the case of multiple-undo. Is its effect 
the reconstruction of the last undone action, or of all the deleted history? 
And what about the effect of Redo when the last Undo has deleted a block 
of actions? Does it recover the whole block or only the last action in the 
block? Moreover, not only what Redo does is unclear, but there is also a 
complex dependence between it and Undo. In the case of single-undo/single­
action, Undo is considered the inverse of the undone command and Redo the 
inverse of Undo. But in any semigroup (the set of command is a semigroup 
[29]) if the inverse exists, then the inverse of the inverse of an element is the 
element itself. This mea,ns that the inverse of Undo (type('x')) is type('x'). 
But Redo is not identical to typer-.I: j. it is just that when performed at a 
particular point of the histOl'Y. it has the same semantics. This has two 
consequences. Firstly, we could consider Redo as a sort of super syntactic 
sugar. In principle, the user could simply repeat the undone command; Redo 
just makes this easier (possibly substantially easier). We could say that the 
domain of interest of Redo is not so m Hch Undo itself as the undone action(s). 
Secondly, like Undo, we have to consider at what level we expect Redo to 
reverse the effect of Undo. Certainl~' Redo is not exactly the inverse of Undo! 

After saying \vhat Redo is nol, we need to progress towards some defi­
nition of what it i8, or at least. as we did with Undo, explore the range of 
options. 

When considering Undo, four major issues arose: reflexivity, granularity 
(single or multiple action), repetition (single or multiple Undo) and the idea 
of commitment points. Each of these has parallels for Redo, and in addition 
the properties of Redo are linked to those of Undo. Although Redo may 
not be a simple inverse of Undo, it is intimately connected. We will see 
such dependence when considering tIlE' granularity of Redo. and also that 
there is an intrinsic dependence of causality that determines whether Redo 
is meaningful. 

5.5.1 Causality 

.Just as you cannot think of Undo \\'it.hout considering what has been done, 
you cannot consider Redo withollt something ha.ving been undone. This gives 
rise to the most basic property of Redo: 

causal dependence: in order to perform a Redo, Undo must have been 
performed. 
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This appears too obvious to bother stating, but serves to highlight the re­
flexive nature of Redo. Wi"th Undo, \ve had to consider whether the principal 
domain of definition is the ordinary command history, or the action history 
itself. With Redo, we move up a level: is it (i) simply the command history, 
(ii) the history with Undo commands, or (iii) does it also know about its 
own role in the interaction? The causality condition would imply at least 
some knowledge at level (ii). So, its effect may be simply in terms of the 
undone actions, but it must at least know that they have been undone. 

5.5.2 Granularity and repetition 

Redo, like Undo, may be applied to single or multiple actions. However, 
there is the additional issue of the extent tied to the granularity of the Undo 
command. vVe refer to such a linkage as gmnularity depe·ndence. In addition 
to there being one or more candidate undone commands to Redo, these may 
have arisen because of one or more actual Undo commands. This gives rise 
to five kinds of pot.ential Redo granula.rity: 

(a) Redo of last undone action 

(b) Redo of SOllle 1111 III bel' of u nclol1e actions 

(c) Redo of all the actions undone by the last Undo command 

(d) Redo of all the.' actions undone by some number of Undo commands 

(e) Redo of all undonc actions (up to the last non-undo command) 

Within this list, (c) and (d) exhibit granularity dependence, whereas (a), 
(b) and (e) only exhibit causa.l dependence (they Redo uru[one actions). 

The last (e) corresponds to a sort of escape, which reverses the effect of an 
entire sequence of unclo:=;. Similar escapes occur at the ordinary Undo level; 
for example, mallY systems have a 'revert' menu option, which allows you to 
restore a document to t he last. saved version. Such escapes are themselves 
a sort. of Undo operat.ion and are often considered in the same context [88]. 
Given that the efrect of Undo can be so confusing, such an escape from an 
Undo dialogue may wedl be a good idea.! 

\Ve can look at each of the Undo categories on Figure .5.1 and see how 
they interact with these kinds of Redo granularity. Recall that class (iii), 
single-undojmultiple-action, was deemed an unreasonable alternative, so we 
will only consider thc ot her three cases. 
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(i) single-undo/single-action: In this case, there can only ever be one 
undone action and one (effective) Undo, so all five Redo categories 
collapse into one. 

(ii) multiple-undo/single-action: In this case undone commands and Undo 
commands are in a one-to-one correspondence, so (a)=(c) and (b)=(d). 
However, categories (b) and (d) look weird. If the system is going to 
allmv single Redo commands to have non-singular effects, why not allow 
this for Undo? 

(iv) m.ttltiple-undo/multiple-aclion: In this case, (a) is the weird option. If 
you can Undo groups of actions. why only allo\~ single Redo steps? 
The same argument could be said to hold for (c) with respect to (d), 
but perhaps, given the different semantic level, one could argue that 
in some systems (c) may be more comprehensible than (d). 

As with Undo, we find that the granularity of Redo interacts strongly 
with the possibility of repeated Redos, but in addition it also interacts with 
the classes of Undo. 'Ve can consider the remaining categories above and 
see which make sense when we consider single and multiple Redo. 

With case (i), multiple-redo is meaningless (only one thing to Redo!), 
leaving us a single category of Redo, flip-undo, where the Undo and Redo 
toggle· between two states. As only olleof Undo or Redo is possible at 
any time, the same button or menu position is used for each, leading to 
the apparent situation where Undo is self-applicable. However, as we saw 
earlier, this' Undo of Undo is Ru/o' situation is never quite uniform between 
Undo and other commands. 

For both cases(ii) and (iv). the 'escape' Redo can only be invoked (as 
a Redo) a siilgle time (although of course it might toggle, like flip-undo, 
undoing the Redo!). 'Vollid one want such a Redo in these circumstances'? 
It might be argued on efficienc~' grounds: a system may store only backward 
deltas; that is, information sufficient to Undo commands, but not Redo them. 
During~a cycle of undoing. the system Iweds only to store the last not-undone 
state and the currentstate: the ('scapc Redo would simply jump back to this 
last not-undone state. However, although this is credible, the extra expense 
of two-\vay deltas over and above one-way deltas is not enormous and so it 
is likely that a Redo of the 'escape' ["arm would only be supplied in addition 
to more incremental Redo. 

In case (iil, we dismissed options (b) and -(cl)., leaving only Redo gran­
ula.rity (a/c) --to consider. For reasons simila.r to those that ruled out Undo 
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of class (iii), we can also see that allowing only a single Redo of granularity 
(a/c) would not be convenient. If we allow repeated Undos, we have to have 
all the expense of machinery and memory to store lots of stat~s, so why 
not allow multiple invocations of Redo also? That is, we should only have 
options (a/c) with multiple Redo, where each Redo reconstructs more and 
more of the undone history of commands. 

Finally, in case (iv), we have a similar story. Options (b), (c) and (d) 
only make sense for multiple Redo, where they perform a similar job recon­
structing the command history. 

Figure .5.2 summarises this taxonomy. Note again the 'diagonal' emphasis 
of the ta,ble: granularit.y and repetition correla:te, both within the operations 
of Undo and Redo, and between them. If you are going to go to all the trou ble 
of storing many history information you might as well use it! 

As we did for Undo. we can summarise this in two informal alternative 
definit.ions: 

Definition 5.3 Hedo is a system j'ul},ction which allows the 'User to recover 
the jJ([.st slate l'clI/oped by the preuiou .. "! Undo. 

Definition 5.4 Redo is (I. system, junction that allows the 1[8er to recover a 
past state l'emoNd by any previous Undo. 

Definition .5,:3 corresponds to flip-undo. As with Undo, there is a design 
choice between achieving Definition 5.4 by the user doing series of redos 
(cases ii.a/e anel iv,c). or with a single large granularity Redo (cases iv.b and 
iv.d). Finally, tilt' eliffpJ'{'nce between (iv.b) and (iv.d) is in the interpretation 
of 'a past state' in Definition .5.4, whether it is 'the past state removed by 
any previous Undo' or 'any past stat.e removed by any previous Undo'. 

5.5.3 Reflexivity 

As we saw in Sect.ion 5.5.1, there is an inevitable reflexivity in the nature 
of Redo - it cannot exist without reference to the previous occurrence of 
Undo. In the ACS model this is captured in the state of the 'pending script'; 
however, for some kinds of Redo (i.a) this is overkill, for others (iv.c/d) in­
sufficient. The active script and pending script contain only the ordinary 
commands so representing alow level of reflexivity: looking a,t the interaction 
with the underlying applicat.ion. The more complex cases require the 'pend­
ing script' to record aspects of the cOl11f>lete action history ~ Undo/Redo are 
reflecti ng on thei I' own heh avioll r. 
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(i) 

(ii) 

Single-undo 
Single-action 

Multiple-undo 
Single-action 

(iv) 

Multiple-undo 
Multiple-action 

Single redo 

(a) = (b) = (c) = (d) = (e) 

Redo only of the last 
undone action 

(a) = (c) 

(e) 
Redo as an 'escape' 

(b/e/d) 

Single redo of 
undone co lands. 

'be different from the 

(e) 
Redo as an 'escape' 
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Multiple redo 

(a) = (c) 

Redo of the last perfon11ed 
undo. 
Repeated redo is used to 
reconstruct the history 

(b/e/d) 

Redo of a block of undone 
command. The size may be 
different from the last undo. 
Repeated redo used to 
reconstruct the history 

Figure 5.2: A taxonomy of RECIo function. The rows represent the granular­
ity; the columns represent the kind of Undo which may precede Redo. 
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For systems where the Undo can be described purely in terms of the 
pending script, the Redo and Undo operations can be regarded as having a 
domain of the form H x H, (active script x pending script). The flip-Undo 
is a degenerate example, as the pending script never has more than one 
command (only one level of Undo is allowed), and the causal dependence is 
captured by the fact that the pending script is not empty only if there has 
been a previous Undo. Based on this, it is possible to fully describe flip-undo 
using three rules: 

1. ordinary command - add it to the active script and empty the pending 
script 

2. Undo - if the pending script is empty remove the last command from 
the active script and put it in the pending script 

:3. Redo - if the pending script is non empty remove the command from 
the pending script and add it to the active script 

Since the last two of these rules are disjoint a single button (or menu option) 
can be used. Alt.hough this is a valid description of the behaviour, it is not 
how any such system is actually implemented - one wouldn't bother to store 
the whole active script and then never use it! Indeed, even for the formal 
specification, we will use just two copies of the state: current state and past 
state - similar to the single-step Undo. With such a representation, both 
Undo and Redo simply swap the two states - identical! The system does 
not need to know whether it is doing an Undo or a Redo, the difference is in 
the user's interpretation of the effect. This is closer to the way it would be 
implemented. 

The most common and straightforward kind of multi-step Undo / Redo 
can also be described lIsing the basic ACS pending script. This is the policy 
found in t..!ficrosoft Word 6 and in the history list of Netscape Navigator. 
In these systems you can Undo any number of commands one by one, or 
even Undo several commands at once, using a menu. The behaviour can be 
described in a similar manner fat the f1ip- undo: 

1. ordinary command - add it to the active script and empty the pending 
script 

2. Undo n - remove the last 11 commands from the active script and add 
them to the pending script 
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3. Redo n - remove the last n commands from the pending script and 
add them to the active script 

Notice that (as we saw with single-step and backtrack Undo) the description 
is simpler (no conditions on the pending script) because it is more uniform, 
even though it is far more costly to implement. Word 6 and Netscape use 
different interface representation metaphors: in Word 6 the user has separate 
Undo and Redo menus, \vhich exactly correspond to the active and pending 
scripts, whereas in Netscape there is a single 'Go' menu with a tick against 
the currently displayed page. The 'Yord 6 menus show commands (e.g. 
'typing'), whereas in Navigator the items in the menu are pages, which 
correspond to states. The latter difference is a direct consequence of the 
more identifiable nature of the web browser state (a VVW'V page). Note 
also that the Netscape interface suggests a model that, rather than having 
two scripts, has just one script with a pointer H X Pt/,. This is equivalent 
to the H X H representation, but is in some ways more flexible (as we will 
see below). 

Not all Undo systems can be described using a simple pending script. 
Systems of type (iv.cjd) need to have some record of how many commands 
were undone by a previous Undo in order to Redo them. The raw pending 
script merely records the list of undone commands, such systems need a 
pending script that itself contains Undo commands! In fact, it is easier 
to think in terms of a pointer into the complete action history; that is, 
Undo j Redo acting on a domain of the form Ha X Pt/,. All commands add 
something to the end of the history. Ordinary commands add themselves 
and set the pointer to the end. The Undo j Redo command takes the action 
currently pointed to, adds the inverse of the action to the end of the list 
and moves the pointer back one. Whether the Undo j Redo command is 
regarded as Undo or Redo is dependent on what sort of command is pointed 
to, and depending on how the inversions of commands are represented, the 
difference may be one of interpretatioll, rather than of different behaviour 
within the application. This sort of strong reflexivity sounds quite complex, 
and indeed in GNU emacs, where it is used, no amount of experimentation 
seems to be able to uncover the rule! However, exactly the same rule is used 
in HyperCard's Back menu function (one of its two forms of history), and 
it seems less confusing there. This form of Undo is rather like having your 
actions recorded by a video, which you can rewind to find previous states 
that you want to restore. HO\H~Ver, the video keeps recording even when you 
are rewinding. Rewinding ordinary recording is Undo, and rewinding past a 
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previous rewinding is Redo! Possibly a real-time or video-pla.yer metaphor 
would make such an Undo / Redo policy more comprehensible. 

5.5.4 Commitment points 

In the taxonomy proposed in Figure 5.1, we said that for systems of class. (i) 
( single-action Undo), each active command commits the previous one, so 
it cannot longer be undone. Instead, systems of class (ii) (backtrack/single­
action) and of class (iv) (backtra.ck/l11ultiple-action) have no backward com­
mitment points. 

For systems of class (i) adding of Redo does not modify the commitment 
point, which is still introduced by the first active command after the Undo 
/ Redo. 

Conversely, for systems of class (ii) and (iv) the situation is a little dif­
ferent. In fact, adding Redo creates an 'undo phase'. Actua.lly, the user can 
type a sequence of act.ive, passive or neutral actions, i.e. the ordinary edit­
ing phase, and can then start the undo phase. The last may be composed 
by a sequence of single-action Undo / Redo (systems of class (ii)), .or by a 
sequence of mult.iple-action Undo / Redo (systems of class (iv)). Any Undo 
/ Redo may be followed and/or preceeded by a sequence (eventualy empty) of 
passive/neutral actions. At this point, any entered active command breaks 
the undo phase and crea.tes a branch in the commands history. From a past 
state there are now two 'next' states, the one previously reached, and the 
one resulting from the new comma.nd. Some systems directly support such 
a branched history [12]. However, the complexity of representing this at 
the user interface (as well as the cost of implementing it) is high. Rather 
than attempting to represent a branching history in the user interface, some 
systems, as Word G and Netscape, adopt the same approach of the systems 
of class (i): they commit the undo phase after any active command. That 
is, the pending script is chopped off a.nd Redo is no longer possible. This 
means we ca.11 regard the dialogue a.s a number of phases: ordinary phases 
consisting of a 11lixtu re of active, passive and neutral commands and undo 
phases consisting of a mixture of passive, neutral, Undo a.nd Redo commands 
(Figure .'5.:3). The transition between these phases is implicit, triggered by 
the first Undo or act.ive action. 

From the above consideration, the undo phase may be seen as a subdia­
logue during the human-computer interaction. Out of this subdialogue, such 
Undo phase is seen as a a.n Undo of a block of actions without Redo. In fact, 
let us suppose that. \\'e have entered this sequence of actions: 
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Undo 

Undd 

active/ Redo/ 

passive! passive! 

neutral neutral 

actions actions 
active actions 

Figure 5.:3: Editing and Undo phases represented as a state transition net­
work. 

CI, C2, C3, C4, C5, U(:3), R(2), U(l), CG 

where U(i) indicates that we have performed an Undo of the last i commands; 
similarly for the Redo. 

Considering that Undo removes actions from the history and Redo add 
some of the undone ones, we can clump together U(:3), R(2), U(l) in U(2). 
In this way, out of the undo phase, the sequence 

CI, C2, C3, C4, C5, U(:3), R(2), U(l), ('G, 

above mentioned, is seen as 
Cl,C2,C3,C4,C!),U(2),C6, which is equivalent to Cl,C2,C3,C6' 

5.6 Final analysis 

Granularity dependence or independence between Undo / Redo involves dif­
ferent systems' behaviours in human-computer interaction. In fact, when 
performing Redo, if the previous [indo has been single (in this case, for gran­
ularity dependence also Redo is single), then it is the system which decides 
which state has to be reached. On t he contrary, if there is no granularity 
dependence, it is the user that chooses which state he is interested in reach­
ing. The fact that the user can choose how to modify the history brings, 
as a consequence, a different representation on the screen of the interactive 
recovery functionality: we have no more buttons or icons, but lists. In fact, 
it is difficult to represent visuall~r something extremely linear as history. 

An example of linearity of histor~r is represented by VisEd [.55], a visual 
editor used to formulate a quer~r to a database of images. In it, a query is 
given by a sketch of the image the llser is interested for retrieval. In this 
application there are two levels of interaction: 1) while interacting with the 
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visual editor, and 2) while interacting with the database. In the first case, 
the interface supports an explicit Undo whose semantics is based on the 
flip Undo. In the second case, an Undo mechanism is provided by a browser 
which allows the user to reach (and eventually modify, applying the principles 
of progressive querying) any query formulated during his interaction. The 
query history is linear: it is handled as a list and the browser moves as a 
pointer in the list. The visual approa.ch is used for the interaction, while the 
history is linearly represented, query by query. 

There are also some interactive systems which have a visual represen­
tation of the hist.ory. An example is provided by Hypercube [20], that is a 
visual query system which support the progressive querying technique. The 
history is composed by different layers, anyone representing a formulated 
query which, when overla,pped, creates a cube; it allows to move queries, 
and, eventually, to modify them, dragging a layer from backward to for­
ward. However, the hypercube technique cannot be applied to a text editor, 
for the high number of states which may belong to the history of a document. 

As we said ill the previous Chapter, what we expect when interacting 
'with a computer, is to obtain a, large effect from small actions. For this 
reason a very powerful Undo, as for systems of class (iv), is extremely useful. 
But we not reduce the risk in intera.ct.ion by increasing the power of Undo! 
In fact, as it happens in Netscape and Word 6.0, the user has the ephemeral 
idea to be able 10 reach any state in the past, since, in different ways for 
different systems. he can handle the list of the Undo and Redo functions. In 
pra,ctice, he can move between the two contexts, Undo and Redo, until he 
does not reach a branching point and follows another path. In this way the 
old branch is deleted frol11 the Undo or Redo lists. For this reason, although 
multiple-undo is more powerful that the single one since it aIIows the user 
to handle directly all the past history, it is also more dangerous. In fact, if 
a user cancels many actions with only one Undo (in Word 6 he can cancel 
up to 100 actions!) and then he realises that the reached state is wl:ong 
but, accidentall~', makes a slip, for example touches the space-bar, then a 
bra,nching point is crpated and all the past history is lost: with a very sl1'1all 
action (as a key press) we ca,n have a big damage. 

At the beginning of this Chapter, we have introduced Undo as a special 
case of reachability, as it allows the user to reach a past state. But how can 
we informally denne the Redo'? 

The a,nswer is ill Figure ,5..1. CLet's suppose that, starting from the initial 
state 80 we have reached state Sn by performing only commands. At this 
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• • -----e • so SI .... -<;IE----- Si --.,----:J>~ 
undo redo 

Sn 

Figure 5.4: The linearity of the history: Undo is the past in the past, Redo 
is the future in the past. 

point the set of the past state is {80. 81, ... , 8 n -d. Suppose also that per­
forming a multiple Undo v,;e have reached state 8i. Now, Si is the current 
state and the set of states which Undo allows to reach is {so, 81, ... , Si-d. 

So Undo continues to be a function in the past, allowing the user to go to 
the left side of the past history. In the current state, we can say that Undo 
is the past of the past. Yet, the set of states which Redo allows to reach 
is {Si+l,Si+2, ... ,sn}. From the current state Si Redo is a function into the 
future, allowing the user to go to the right side of the past history. So also 
Redo is a special case of reachability, allowing the user to reach a future state 
in the past. 
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Chapter 6 

Formal behaviour of 
backtrack Undo 

In this Chapter we are going to analyse and forma.!ly express the relationships 
between an original system without Undo and its augmented one, which is 
enriched by Undo. Such a formalisation will be done through the definition 
of conservative encapsulation. The last does not consider the kind of Undo 
(for example if flip or backtrack Undo), but simply captures the idea that the 
original system is, in some way, still 'inside' the full system with Undo. When 
we talk about a particular kind of Undo, the conservative encapsulation is 
not sufficient to capture all the aspects of its behaviour. To this aim we will 
introduce two equivalence relationships, a strong one and another which is 
weaker, and we will provide four equations, based on the above mentioned 
equivalences and on the monotone one, which fully describe the behaviour 
of flip and backtrack Undo. Next, we will focus only on the backtrack Undo 
and, after providing its formal definition, we will prove that all the backtrack 
Undo of the same PIE are behaviourally equivalent. 

6.1 SystenlS with and without Undo 

In the previous Chapter, when we provided an informal definition of Undo, 
we referred to it as a system function which allmvs the user to reach "any" 
or "the" previous state. But it is difficult to provide a definition of state. A 
state represents the situation in which the system is at a given time, and such 
a state may have more or less components, depending on what we consider 
as a system, and hence on how many components the system has. 

89 
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One definition of 'state' is the one we have in the 'state' component of 
the ACS model (see Chapter 5). This corresponds to the state of the system 
if there were no Undo. Indicating a system without Undo as P , we may call 
8 the set of states of P . 

If we add Undo to the original system P , we have a new system pu. 
In this case, in order to be able to perform Undo, pu must store additional 
information, often some sort of history or record of past states. That is, the 
full state of the system contains more information than in 8. This complete 
state of all the system, including the bits needed for Undo, we refer to as 
8 tt 

• 

In the same way in which we ha,ve considered two kinds of state, as the 
state of a system without Undo and the state of the same original system 
enriched by Undo, we can consider two kinds of action history, one related 
to P and the other to ptt. In the case of P , we can indicate the command 
history with H, similarly we can use FJU for PU. 

\iVhat we are going to do in the next Sections, is to formalise the rela­
tionshi ps between P and ptt, expressing some formal liilk between Hand 
HU, 8 and 8 tt

• In particular, we will introduce the definition of conservative 
Encapsulation in order to express the idea that the original system is, in some 
way, still there 'inside' the full system with Undo. 

We firstly consider the system withou t Undo, then look at the full system, 
and finally the relationship between the two. The model we will use is a form 
of the PIE model [27], llsing multiple levels of abstraction as in [29]. 

6.1.1 System without Undo 

In oreler to study the relationship between P and p u , we need to be able to 
establish if two historips produce the same effect. The word 'same' implies an 
equivalence relationship. Since to understa,nd the Undo mechanism we need 
a deep knowledge of the system behaviour, we require to know if two effects 
are the same when they look the same. For this reason, we need to use the 
monotone equivalence. with which we can be sure that what looks the same 
is really the same. If a. PIE is monotone, that is the monotone equivalence 
holds, we can talk indifferently of effects or states. By indicating with C the 
set of 'ordinary' commands (i.e. not Undo), we can define a state update 
function doit as 

dod : 5' X C -+ S 

wit.h an initial state 80. 
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We can derive from this function two other functions: doit*, obtained by 
iterating doit, and 1, the interpretation function of the PIE model: 

doit* : 5 x H -+ 5 

where 

doit*(s, <» = s 
doit*(s, h /"""', c) = doit(doit*(s, h), c) 

This iterated version tells us the effect of a whole sequence of commands. 
Recall that the sequence of commands, written as H, the command history, 
is defined by H = C*, the set of finite sequences of C. 

Since P is monotone, we can defi ne the interpretation function in term 
of the dod. In this c.ase, we can simply define the interpretation function as 
the iterated dod starting from the initial state: 

1(h) = doit*(so, h) 

We will also use a dot to represent the 'curried' version of a doit function: 1 

doit(., c) : 5 -+ 5 

where 

doit(., c) = AS. doit(s, c) 

6.1.2 System with Undo 

When we consider the system with Undo, as we noted, the state space in­
creases. The set of full states we call 8 11 and the set of actions A = C u U, 
the last expresses that any user action may be an ordina,ry command c E C 
or an Undo. As for the system without Undo, we have a corresponding state 
update function doit" and initial state so' As with the original system we 
can define an iterated version doit v

*. For the same reason that applies for 
P , also pv is monotone; this allows us to define an interpretation function 
111 = doit"*(SO, h). 

It is important to note that this full state will extend the original state, 
not in the sense that there are extra possible states (i.e. not 5 C 5 11

), 

I Currying is a t.echnique used in funct.ional programming and lambda calculus to sim­
plify the present.ation of complex formulae. Some of t.he parameters of a function are 
fixed, giving a function with fewer parameter",. In this case, we are fixing the command 
parameter of doit, yielding a function doi t ( .. c), which has one paramet,er, i.e. only a state. 
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but in the sense that each state of the full system has some component (or 
effectively such) that corresponds to a state of the original system. That is, 
there is a projection function proj, which, given a state of the full system, 
gives a corresponding state of the original system. 

Pl'Oj : StL -+ S 

Typically, the full state contains some form of history information. For 
example, a particular Undo system might store the 'normal' state and also 
the comma,nd history (active script). That is, its state would be given by: 

StL = S X JI (example state) 

The projection fll nction would then be: 

v < s, h >E Sti. ])1'0)( < s, h » = S (example projection) 

The exact way in which the original state is extended, and the nature of 
the projection function, will differ between Undo functio'ns. 

6.2 Encapsulation 

When we add Undo to a. system P we expect tha.t, in some sense, the original 
system is still inside t.he augmented one, that is we expect that they behave 
similarly when we do not perform Undo. We can show it by proving different 
theorems, which are based on different definitions, starting from the one of 
eT/,capslllation. 

Definition 6.1 (Encapsulation) Given a system P = < H, S, doit, So > 
we say that its all[jmen/ed system, plI = < JItL, StL, doitt., sg > is an encap­
sulation ofP if there e,l'ist two functions, ])l'oj and eff, such that: 

(i) ])/'oj : su -+ S ( Cl) 

(ii) eit : f[U -+ H ( C2) 

(iii) VII. E If!'. fJl'oj([t'(h)) = l(eff(lI)) (C3) 

Condition (i) represents a link between the sets of states StL and S. 
Condition (ii) represents a mapping, between the histories. Such a mapping, 
that we indicate ,vit.h Eff, corresponds to the mapping in which the ACS 
model determines the active script from the user history. Finally, condition 
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eff 

H 

proJ 

I 
----..;>~ S 

Figure 6.1: Encapsulation 

(iii) says that the part of the state corresponding to the original system is 
just as if we had executed the effective history. Indeed, the system may 
actually be implemented by using the original update functions on this part 
of the system state. Note that, this condition says nothing about the way 
in which the effective history is related to the action history, merely that it 
and the projected part of the state 'agree'. 

The conditions for an encapsulation can be summarised by the commut­
ing diagram in Figure 6.1. The two sides of the above equation correspond 
to the t\VO paths round the diagram. 

6.2.1 Conservativeness of state and history 

The encapsulation condition says that the original system is still in the 
augmented one. However, so far we have set no conditions other than that 
the effective history and the projection in some sense agree. We want to say 
more. Obviously the new commands may have arbitrary behaviour, but we 
expect the original commands to behave as they always did on the original 
part of the state. In keeping with other areas of formal specification, we 
regard this as a conservativeness property - the original system is conserved 
within the extended system. This is formally expressed by the following 
definition: 

Definition 6.2 (Conservativeness of state) Given a system pu which 
is an encapsulation oj the original 8.1)81e11l P , we have the conservativeness 
oj state if: 
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SU doitUC. , C) SU 
SU ~ 
0 _7' 
./ 

./ 

1< proJ proJ 
" " Sa ...... ~ 

doit(. , c) s s . ~ 

Figure 6.2: Conservativeness of state. 

(i) P1'oj(so) = So 

(ii) Vc E C, s E 8 11
• proj(doitU(s, c)) = doit(p1'Oj(S), c) 

( G4) 

( GS) 

Condition (i) says that the initial state of the full system (so) corresponds 
(via the projection function) to the initial sta.te of the original system (so); 
condition (ii) says that the effect of applying a command to the full state 
is the same as that of applying it to the projected form of the state. This 
condition may be captured in a commuting diagram, shown on Figure 6.2. 
The main part of the diagram corresponds to condition eii), and the small 
triangle on the left to condition (i). The '1' refers to the set of one element 
and the arrows labeled' so' and \so' are constant mappings (from the single 
element of '1'). This is simply a, formal trick that allows us to include 
this information on the diagram. Also note that the functions at the top 
and bottom of the diagram are the curried versions of the appropriate doit 
functions. They are for a particular command c, and strictly one can imagine 
a copy of this diagram corresponding to every such command. 

In a similar fashion we expect the effective history to behave in a sen­
sible fashion where ordinary commands are concerned. To express this, we 
introduce the ddi n i tion of conservat iPfn,ess of effective history. 

Definition 6.3 (Conservativeness of effective history) Given a system 
pu which is an r:ncojJsulation of the original system P, 'We have the conser­
vativeness of r:B'f('lil'( history if: 

(i) eff«»=<> (G6) 
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Figure 6.;3: Conservativeness of effective history. 

(ii) life E C, hE Htl • eff(h ~ c) = eff(h) "'"' e (C7) 

Condition (i) means that the effective history corresponding to an empty 
action history should be empty, ,".'hile the meaning of (ii) is that by adding 
an ordinary command to the action history, the same command is addedto 
the effective history. Also in this case, the above introd uced conditions are 
captured in the commuting diagram, shown in Figure 6.3. 

At the right-hand side of the definitions of encapsulation and conserva­
tiveness of state and history that we provided in the previous Sections, we 
put a label, an uppercase C follOl,'eel by a number. Such labels will be used 
in the following as a quick reference to such conditions. 

6.2.2 Conservative extension - the cube 

If all the three diagrams commute. we will say that the augmented system 
ptl is a conservative encapsulation of the original system P . More forma.lly, 
we have the following definition: 

Definition 6.4 If the augmen.ifd PTE pH = < H",SH,doitH,so > is an 

encapsulation of the PIE P = < H. S. dod, 80 >, and the conservativeneS8 
of state and history hold, then pu is a conservative eneap.su/ation of the 
original PIE P . 

The whole set of conditions can be captured in a single commuting dia­
gram (Figure 6.4), which we call 'the cube'. This diagram is rather compli­
cated to read on its own, as it includes the diagrams related to encapsulations 
and both to the conservativeness of state and history. The front and back 



96 CHAPTER 6. FORMAL BEHAVIOUR OF BACKTRACK UNDO 

H U /u ~ SU d ° u( ) 
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Figure 6.4: The cube. 

) 

faces of the cube are two copies of Figure 6.1, the left being Figure 6.3 and 
the right Figure 6.2. To make it easier to read, the captions at the back are 
italicsized and those at the front emboldened. 

The cube has'six faces: four correspond to the commuting diagrams, but 
that leaves out the top and bottom faces. Drawing the bottom on its own, 
gives the diagram in Figure 6.5. This refers only to the model of the original 
system, and upon examination is simply a restatement of the construction 
of I from doit. The top triangle is the initial condition that 

I( <» = So 

and the square corresponds to the iterated case 

I(h;-., c) = doit(I(h), c) 

The top is similar, except that it refers to the full system. 
Both the top and the bottom of the cube commute by the definitions of 

I and JU'. This is important, as it suggests that some faces of the eu be are 
redundant, in the sense that they are implied by the others. In particular, 
when SU represents the sets of all the reachable states, then the encapsulation 
and the conservativeness of the history properties imply the conservativeness 
of the state. The fact that SU represents the sets of all the reachable states 
means that IU is surjective, i.e .. the wea,k feachability property holds (see 
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Figure 6.5: Bottom of the cube. 
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Chapter 1). This allows us to say that for any state s in su, there is a 
corresponding action history h from HU which gives rise to s (i.e. s = IU (h)). 

It is important to consider only the reachable states, because, depend­
ing on how one formulates the state of a system, it may include so called 
'garbage' states. These are states allowed by the description, but can never 
occur in a real system. For example, if the position of the cursor in a text 
editor is represented by an integer denoting the offset into the text, then it 
will always point to a position within the text. Ho\vever, a simple definition 
of the state as: 

S = Text x Int 

would in principle include unreachable states such as < "hello", 500 >, where 
the cursor points to a location outside the text. Such a state would never 
be reached during the normal use of the system and is thus 'garbage' in the 
formal description. 'iVe do not want. nor need to say anything about the 
properties of such states, they never happen and are uninteresting. 

The fact that the encapsulation and the conservativeness of history imply 
the conservativeness of state when TU is surjective, is proved by the following 
theorem: 

Theorem 6.1 Given a PIE pu = < HU, S1l, doit U
, 80 > which is an encap-

8ttlation of the PIE P = < II, S, doit, 80 >, where Sll is the set of reachable 
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states of pu, and the property of conservativeness of history holds, then the 
property of conservativeness of state holds. 

Proof: To prove this theorem, have to prove that, if both the diagrams 
of Figure 6.1 and Figure 6.3 commute, then also the diagram of Figure 6.2 
commutes. We will consider the two parts of Figure 6.2, the left triangle 
and the main square, separately. In the left triangle we have to prove that 
the initial states agree, that is we have to prove that: 

(i) Pl'oj(sg) = So 

while in the main square we have to prove that: 

(ii) ]J'/'oj (doitll (05, e)) = doit(p'I'oj(05) , e) 

We firstly prove (i). By definition of IU, since IU«» = sg, we have 

Now, since pll is an encapsulation of P , then condition C3 holds, that is: 

]J'/'oj(r( <») = I(eff( <») 

For the cOllser\'ativeness of hist.or~r, we have that C4 holds, that is: 

I(eff( <>)) = I( <» 

Finally, by definition of I, we have: 

I( <» = So 

Clumping all these equalities, we have: 

])'/'oj(05g) fJ1'oj(JU«» 
1(cff«») 
1«> ) 

elefn. of IU 
C3 
C4 

elefn. of I 

o 

To prove (ii). appJ)!ing the weak reachability property, we can choose hs 
sLlch that: 

, " 
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Given this definition, we have that: 

By definition of P, we have that: 

Since pu is an encapsulation of P , the condition G3 holds, that is: 

proj(IU(hs ~ e)) = I(eJJ(hs ~ c)) 

Since the conservativeness of history holds, then, for condition C.S we 
have: 

I(eJJ(hs ~ c)) = I(eJf(hs ) r-- c) 

By definition of interpretation fUllction J, we have: 

I(efJ(h s ) r-- c) = doit(I(efJ(hs))' c) 

At this point, by applying condition G3 to the argument of the doit func­
tion, \ve have: 

doit(I(eJJ(h s )), e) = doit(proj(I(h s), c) 

Finally, by appying again the reach ability property, we have: 

dOit(pl'Oj(I(hs). c) = doit(proj(s), e) 

Again, clumping all these equalities together, we have: 

proj(doil"(s, e)) pl'oj(doit"(I"'(hs), c)) 
p/'oj(JU(hs .~ e)) 
I(Eff(h s .~. e)) 
I(ef f(h s ) ~. e) 
doit(I(ef f(h s )), e) 
doit(p/'oj(JU(hs)), e) 
doit(pl'oj(s), c) 

reach. prop. 
defn. of JU 

C3 
C.S 

defn. of I 
C3 

reach. prop. 

DO 
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A consequence of this theorem is that, if SU is the set af reachable states, 
then to verify that a particular Undo system is indeed a conservative encap­
sulation, it is sufficient to show that it satisfies the encapsulation conditions 
and that the effective history behaves appropriately, since the conservative­
ness of state is given by the above mentioned theorem. This is expressed by 
the following corollary: 

Corollary 6.1 If a. PIE ptt = < [-Ju,Stt,doitU,sH >, where SU is the set 
of rea.chable staff's, is an encapsulation of the PIE P = < H, S, doit, So > 
and the conservativEness property holds for the effective history, then pu is 
a conservat-ive encapsulation, of P . 

6.3 Algebraic properties for Undo 

In the previous Chapter we introduced a classification of Undo systems, 
mainly based on the fact that Undo may belong to the command history or 
not. In the last case, Undo is not self-applicable (i.e. the following Undo does 
not reverse the effect of the previous one) and the Undo of the Undo may be 
used as a, backtrack tool. \Vith the pure backtrack Undo mechanism, for any 
applica.tion of Undo, the system totally forgets about the cancelled command 
a,nd no form of Redo will be possible. The fact that, with the pure backtrack 
Undo the system forgets everything about the cancelled command, allows 
the user to reach "exactly" the previous state. Using the strong equivalence 
introduced in Chapter 1, we have that 

c"-" Undo", 1lull El 

When Undo belongs to the command history, then it is self applicable and the 
Un.do of Undo is a,lIowed as the Redo function. We refer to this class of Undo 
mechanism as flip Undo. With the flip Undo, after an Undo application, 
the user has the sensation that the reached state is the previous one. In 
fact, the internal component of the state has also to remember the last 
undone command in order to use this information if a Redo occurs. Since 
the link between states and effects is expressed by the proj function as 
p/'oj(s) = e, then we can forma.lise the behaviour of Undo in flip Undo by 
introducing the projection equivalence "'p,·oj. We say that two states Sl, S2 

are projection equivalent, S1 "'In'oj S2, if they have the same projection, that 
is proj(sd = P/'oj(S2) -the "'PI'OJ for the state corresponds to the =1 for the 
programs (see Chapter 1). In case of the flip Undo, we have that 
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Vs E SU, c E C. pl'oj(doit"*(8, C r--. Undo)) = ]J'/'oj(s) 

or, alternatively 

C r--. Undo "'proj null E2 

Since, if two states are strongly equivalent then they are the same, in the 
sense that they are equal component by component, then they will also have 
the same projection, i.e. the "normal" component of the state. This means 
thatE1::::} E2. 

The equation E2 is not sufficient to describe flip Undo behaviour, since 
Undo of Undo may be used as the Redo function, reaching so "exactly" the 
state in which the system was before the first Undo. This may be expressed 
by the following equation: 

Undo·~ Undo"", null E3 

In both the Undo mechanisms, backtrack and flip Undo, we have not yet 
considered what happens when Undo is applied at the initial state, when no 
command has been yet entered. Generally, in this situation Undo has no 
effect, and this is expressed in the following equation by using the monotone 
equiva.lence: 

E4 

\Ve now have the necessary information to formally express the behaviour 
of backtrack and flip Undo. The backt rack Undo may be described by the 
two following eq nations: 

c""""' Undo"", null 
Undo =t 1I111l 

E1 
E4 

while the flip Cndo behaviour can 1)(' described by the three following equa­
tions: 

c,-.. Undo ""'P"oj null 
Undo,-. Undo", null 
Undo =t nul! 

E2 
E3 
E4 

At the right-hand side of the above introduced equations, we put a label, 
an uppercase E followed by a nUlllber. Such labels will be used in the 
following as a quick reference to stich equations. 
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Notice that none of these equations capture the strongest informal defini­
tion of Undo that we provided in the previous Chapter. In such a definition 
we said that only and at most the previous state can be reached - that is, 
multiple Undo is not allowed. The formal definitions are permissive: saying 
what you can do, but not restrictive: saying what you cannot do. Such re­
strictive conditions are hard to express over the state, but can be formulated 
using the effective hiRtory. We can say that the effective history's lenght is 
never more than one, less tha.n the longest it has ever been: 

len(eff(h)) + 1;::: max len(Eff(h')) 
h'<h 

Note that the less tha.n or equal relation '::;' is being used as a shorthand 
for 'is an initial subsequence of'. That is: 

h' ::; h <¢=:::::> 3h"st.h' ----- h" = h 

6.4 The reflexive nature of Undo 

In the previous Section. we introduced four equations in order to formally de­
scribe the behaviour of backtrack a.nd flip Undo. In particula.r, the equations 
E3 and E1 characterise systems for which Undo is or is not self-applicable. 
The combination of the two equations gives a st1'Ong Undo property which 
has been called lhOl'ollghness [88]. However, it turns out to be effectively 
inconsistent. Yang [88] proves that the two common forms of Undo system 
-backtrack and fIi p Undo - do not sa.tisfy this strong Undo property. In fact, 
it is shown in [25] that no Undo system can satisfy this property except for 
those where the underlying system has at most two states, as the diagram 
of Figure G.G shows. 

The top and bottom routes round this diagram consider two different 
potential interactions from an arbitl'ary state of the system So. Following 
the upper interaction path in Figure G.6, the user can reach Sa by executing 
a., while following the ot her route, the user can reach Sb by executing b. By 
performing the Undo in the reached sta.te, both the routes go back to the 
original state So, as both (l ----- Undo and b ----- Undo are equivalent to the null 
command (doing nothing). Fina.!ly, consider what happens if Undo is issued 
from the state So. Considering the upper interaction path of Figure 6.6, the 
following performed l'ndo in the state So should lead to Sa, while, from the 
lower intera.ction pa.th. one wouiCl conclude tha.t executing Undo in the state 
So should lead to 8/,. Which is right? 
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S 

/ 
a 

~ undo 
So So :> ? 

~ ~ 
sb 

Figure (j.(j: Undo of undo? 

Well, if the strong Undo property really holds, then both must be right. 
That is, 8 a = 8b. But as a and b were arbitrary commands, this means the 
effect of any command in the state 80 is the same. Since a and b are arbitrary 
(one of them could also be Undo), we see that the system can have at most 
two states, with all commands (and Undo) simply toggling between them. 
That is, the strong Undo property is impossible to satisfy for any realistic 
system, which usually has more tha.n two states. 

In other words, although Undo is refiexive in the sense that it looks in on 
the interaction history of the system, it cannot be entirely reflexive, treating 
itself on a par with other commands. 

6.5 Behavioural equivalence of backtrack undo· 

In the previous Sections 'we introduced the relationships between a PIE with­
out Undo and its augmented s~'stem. the one enriched by Undo. Now we 
focus our attention only on a given class of Undo systems: the backtrack 
Undo. 

Definition 6.5 (Backtrack undo) A PIE pb = < Hb, Sb, doitb, sg > 1S 

bocktrod: Undo of the PIE P = < II. S. doit, So> If: 

(i) equations E1 (Inri E4 hold: 

(ii) pb i8 (J consel'vatitJe encajJ8ulation ofP. 

The meaning of equation El is that if we perform Unrlo in the initial 
state as a first comma.nd, we have 110 effect, that is 
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doitb (sg, Undo) = sg. Since the system is monotone, we can express the 
interpretation function [ in terms of the doit function, so tha.t equation El 
may also be expressed as 
[(Undo) = doUb(sg, Undo) = sg. 

Moreover, the meaning of equation E2 is that if we perform an Undo 
after a command, then we reach exactly the state in which the system was 
before Undo was performed. Forma,lI~r\ this is expressed by 
doilb(doitb(sYt' c). Undo) = Srt' 

Two a,ugment.ecl systems of the same original PIE P may have different 
states, but may be identiCal when viewed in tel'fiS of the state of the original 
system (using projection). In this case, we say that they are behaviourally 
equivalent, tha.t is: ' 

Definition 6.6 (Behavioural Equivalence) If pI and p2 are encapsula­
tion of P witli the ,,(ime allgm,ented comrnand set Cb and command history 
I-Ib, we say thai pI and p2 are behaviourally eqtl.Jvaient if 

\:Ill. E lIb. projl(ll(h)) = proj2(l2(h)) 

Another way to look at this definition is to imagine tha,t the display we 
see of p1and p 2is via tbeir respective projections. If this is all we can see, 
then they behave the same. 

Given a PIE p, all its a,ugment.ed system pb are behavioural equiva­
lent, i.e. any conservative encapsulation of P, satisfying El and E4, are 
behaviourally ~qllivalent to the pure backtrack Undo. This is proved in the 
following theorem: 

Theorem 6.2 (Behavioural equivalence of backtrack undo) All the PIEs 
which are bad:! meA' (!,irlo oj ! he .'lame PIE P are behaviourally eq'U1:valent. 

To prove this t\lC'OrL'lll, we Ileed the following lemma: 

Lern.ma 6.1 Gil'en (/ PIE pb which is a backtrack Undo of the PIE P , if 
we do a substitution oj the Junction eff with a special eff, e.ffsp so defined 

eff sp : I-Ib -+ I-J 

where 

eff sp( <» 
elf sp(h --- c) 
eff sp (Undo) 
eff sp (h ~ U Il do) 

<> 
effsp(l1) .-... c 
<> 
chop1 (effsp(h)) 
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chop! «» 
chop! (h """"' c) 
ChOPn+l (h) 

<> 
h 
ChOPl (choPn ( h)) 

then pb is still a backtrack Undo of P with respect to proi and the eff sp 
functions. 

In order to prove this lemma. we Ileed to exploit two properties of elfsp: 

Proposition 6.1 Giuen the effs?' function so defined 

effsp : HO -7 H 

where 

eff sp( <» 
eff sp(h """"' c) 
eff sp ( Undo) 
effsp(h ~ Undo) 

choPl «» 
chop! (h ----- c) 

choPn+! (h) 

<> 
h 

<> 
efr (1I)-----c .. sp 
<> 
chop! ((ff sp (h)) 

choPI (choPn(h)) 

then, the two following properties hold: 

whae Undo71 indicates the appiicat ion of n 8ucceS8ii:e Undo. 

(P1) 

(P2) 

Proof (Propositioll 6.1): tIl(' proof of the above introduced properties is 
done by induction. We start with property (i). 

(ia) basic step, n = 0 
If n = 0, then Undon =<>, that is effsp(Undon ) = effsp«». 
By definition of effsp, we have that effsp (<'» =<>. 

o 
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(ib) general case 

Assume that effsp(Undon ) =<> holds by inductive hypothesis, then 
prove that eff sp (U ndon+1) =< > holds. 

Since Undon+1 = Undo(Undon ), then 

By definition of eff sp \ve have that 

By applying inductive hypothesis on t.he argument of the ChOPI, for which 

eif sp (lJ ndon
) =< > \ we have t.hat 

and b~ .. definition of choP! \ we have 

Clumping all thcs(' equalities together, we have: 

(::If sp( U llrlon+! ) eff sp (Unrlo(U ndon )) 

choPI (e.ff.sp(Undon
)) 

clloPI«» 

<> 

def. of Undo seq. 
def. of eff sp 

induc. hypothesis 
de f. of chop! 

D 

Now we can pro\'(' the property (ii). This is done by structural induction 

on q. 
(lia) basic step, q =<> 

We have to prove that effsp(p'-', c ~ Undo) = effsp(p) 

eifsp(p'-" c ~ undo) = chopr(effsp(p ----. c)) 
= . chopdeffsp(p) ----. c) 
= e.ff.s p (p) 

def. of chop! 
def. of effsp 

def· of ChOPI 
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(iib) general case 
We have to prove that eff sp(p """ c """ Undo"",, q) = eff sp(p """ q). 
In this case, q may be a history h followed by a command or by an Undo 

Assume that the inductive hypothesis is valid until h; prove it for h + l. 
The one more may be an ordinary command c or an Undo. Consider before 
the case (iibrJ 
Left 

By definition of eff sp we have that: 
effsp(p"",, c """ Undo"",, h """ crJ = r:Jfsp(p """ c """ Undo,-.. h) """ CI. 

By applying inductive hypothesis Oll (p.~ c,-.. Undo"",, h), we have that 

Right 
By definition of eff sp 

so the left-hand side and right-hand side are equal. 

Finally, consider the case (iib2)' ill which q = h ~ Undo. 
Left 

By definition of ChOPl, we have 
effsp(p --- c,~ Undo ~ h --.. Undo) = chopr(r:ffsp(p~· c ~ Undo ~ h)) 

Applying structural induction 011 (p""" c,-... Undo"",, h), we have 

Right 
By definition of ChOPl, we haw 

so the left-hand side and right-hand side are eq.ual. 

DO 
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Before starting the proof of Lemma 6.1, we need to introduce (and to 
prove!) another property: 

Proposition 6.2 Given a PIE pb = < Hb, Sb, doitb, sg > which is a back­
trak Undo oj the PJE P = < H, S, doit, So >, then the Jollowing property 
holds: 

(P3) 

Proof (Proposition 6.2): The proof of this property is also dOlle by 
induction. Since pb is backtrack Undo of P , the equality E4 holds, that is 
I( Undo) = sg. 
(i) Basic step, 11 = 1. 

By applying pcplalion E4, we have: 

Jb(Undo Tl
) = [b(endo) = sg. 

(ii) general case 
Assume the incluctive hypothesis holds for n, prove it for n + l. 
By definition of Cnrlo we have that 

Jb( Undo ll +!) = [b( UndoTi ~ Undo) 

which, by definition of [b, is 

= doitb(Ib( Unrlo ll
), Undo) 

and the last, beillg J/;( Undo 'l ) equal t.o sg by inductive hypothesis, is equal 
to 

= doitb(sg. Unrlo) 

which is equal to sg b~! definition of doitb• 

00 

Now, we can start the proof of Lemma 6.l. 
Proof (LellllllC1 G.I): To prove that the PIE pb with the special eJfsp 

function is a backtrack Undo of p, we have to prove that: 
(1) equations E1 and 84 hold, 
(2) pb is a const'rvative encapsulation of P. 

The function ejf sp satisfyes E4 by definition and E1 by property P2, so (1) is 

done. 'Ve have to prove (2). To f>rove that p b is a conservative encapsulation 
of P, we need to prOH' t.hat 
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(i) pb is an encapsulation of P; 

(ii) conservativeness of history holds; 

(iii) conservativeness of state holds. 

Alternatively, by applying Corollary 6.1, only points (i) and (ii) would 
be necessary, since (iii) is a consequence of (i) and (ii). Really, since we have 
modified only effsp function ancinot projb, and since the original pb was a 
backtrack Undo of P , then (iii) still holds. The point (ii) is simply given by 
definition of elf sp' "\Ve must prove (i). To prove that pb is an encapsulation 
of P , means that the diagram of Figure 6.7 commutes. This means that we 
have to prove that 

The proof is provided by induction.We have to consider three cases: 

(a) basic step, h =<>; 

(b) h = 11.' '"""' c; 

(c) h = h' '"""' Undo 

Really, for case (c), we have to consider two kinds of history. In fact, the 
last may be clone by a sequence of n Undo, or by a sequence in which at 
least one element is an ordinary command. These two further conditions are 
expressed respectively in 

(el) h = [hulon ; 

(C2) h = hI: '"""' c·~ UndOn - k- l : 

where hI; is a sequence of!.; elClllents of lib. 

(a) basic case, II. =<>. 
In this case we have to prove that 

Left 
By definition of JU we havc that 
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S
b 

>-
.b 

proJ 

I 
H -----:l>-~ S 

Figure G.7: Encapsulation with the eff sp function 

Since there is conservativeness of state, then ]Jl'ojb(sg) = sg. 
Right 

By definition of Elf Sf} we have 

which is equal to sg by definit.ion of /b. 

(b) Assume that VII E lIb .1)l·Ojb(Jb(h)) = I(effsp(h)) , 
theh we have to prove that 
Vh E H b, C E C'. /1l'Ol(Jb(h ,-.., e)) = /(effsp(h """' e)). 
Left 

By definition of /b we have that 

By applying cons<.'rvativeness of st.ate, we have: 

By applying inductive hypothesis on h, we have: 

Finally, by using the rela.tionship between doit and I, we have: 

doit(J(e.rr~p(h), e)) = I (e.flsp (h) ,-.., e) 

D(a) 



r~" I 
I 

," i 

r" 1 

r ! 

6.5. BEHA. VIOURAL EQUn~4.LENCE OF BACKTRACK UNDO III 

Right 
By definition of eJJsp we have that 

J(eJJsp(h ---. e)) = J(eJJsp(h) ---. e) 

so the left-hand side and right-hand side are equal. 

(cd In this case h = Undon
. 

Assume that proi(Ib(Unrloll)) = I(eJfsp(Undon )) , 

then we have to prove that 
projb(Ib(Undon ---. Undo)) = J(ffJsp(Undon 

----- Undo)). 
Left 

For P:3 in Proposition 6.2 'H' have that Jb(Undo7l
) = sg, so 

By applying conservativeness of state, we have pJ'oi(sg) = SQ. 

Right 

D(b) 

By applying PI of Proposition G.1, for which eJfsp(Undon ) =<>, we 
have that 

J(effsp(U71don+1
)) = J«» 

and, by definition of J. we have J( <» = SQ. 

SO, the left-hand side and right-hand side are equal. 

(cz) In this case II = hk ~ c ~ Undo n - k- 1 • 

Assume that 
projb(Ib(hk'~ c,-, [;-71(/On-k-l)) = l(rJfsp(hk ~ c~, Undo7l

-
k- 1 )), 

then we have to prove that 
]Jl'Oi(Ib(h k ~ c ~ Uurlon-I.-)) = I (clf8p (hI.- ~. c ~ [T71don - k )). 
LeJt 

By definition of Undo, we have 

O(Cl) 

proi(Jb(hk ~ c ~ Undo"-I.')) = 7)I'0./)(lb(hl; ,~ c~· Undo ----- Undon - k- 1 )) 

which, by applying equation £1, i)('comes 
= JY/'oi(Ib(hk .~ Undo1l -1.--l)) 
Now, being the sequence hI,- ,~ ClIrlOn - k- 1 shorter than n + 1, then, by 

applying structural induction we have: 
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Figure 6.8: p1and p2are encapsulation of the same PIE P. 

Right 
Since eiisp satisfies equa.tion E1 (P2 in Proposition 6.2), we have: 

so the left-ha.nd side and right-hand side are equal. 

DO 

Finally, we can now provide t.he proof of Theorem 6.2: 

Proof (Theorem G.2, l3ehavioural equivalence of backtrack Undo ): Let 
us consider two PIEs, pl= < III, 8 1 , doi/!, 86> and p2= < H 2, 82 , doit2, 86 > 
which are backtrack Cado of the same PIE P = < H, 8, do-it, 80 >. vVe ,have 
t.o show tha.t they arC' behaviourally equivalent, that is the diagram of Fig­
ure 6.8 commutes. 

Since p 1and p2are bactrack Undo of the same PIE P , then HI = 
H2 = Hb = II U [Tnrlo. For this reason, the diagram of Figure 6.8 may 
be redrawn as in FigurC' (Ul. To prove the commutativity of this diagram, 
we have to prove that \/It E JIb,projl(Jl(h)) = JJl'oj2(J2(h)). By applying 
Lemma 6.1, if WE' make a substitution of eiil and eii2 with eiisp , then the 
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Figure 6.9: Another way to represent that pi and p2are encapsulation of the 
same PIE P. 

upper and lower parallelograms of Figu re 6.9 still commute. So, by applying 
the commutativity of the upper parallelogram of Figure 6.8 (due to the fact 
that p1is an encapsulation of P ) \\.(' have: 

By applying Lemma 6.1, we have 

In the same 'way we have 

DO 

Theorem 6.2 says that. even if \\"(, have different implementations of the 
backtrack Undo of a given system, they are all equivalent. Such an equiva­
lence is in terms of the effective histor~', and we cannot say anything about 
the relationships between the sets of states of the involved PIEs. The mean­
ing of this theorem is that, from the user point of view, all the backtrack 
Undo of the sa.me system have the sallle behaviour. 
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Chapter 7 

Upper and lower bound of 
backtrack Undo 

In the previous chapter we proved that all the backtrack Undo of the same 
original PIE P, even if they have different implementations, are behaviourally 
equivalent, that is from the user's poi nt of view they have the same be­
haviour. In proving such equivalence, ".:e established a relationship between 
backtrack Undo PIEs, a relation>;hip based on the effective history. What 
can we say on the sets of states? Is it possible to find the "biggest" and 
the "smallest" set of states? \Ve cannot say precisely what there will be in 
any set of states, but for any backtrack Undo pb we can establish a kind of 
partial order, finding a lower and upper bound. \Ve will call such lower and 
upper bound pmin and pmax respectively. In this Chapter we are going to 
prove that for any pb there exists a homomorphism from the set of states 
of pmax and the one of pb, and similarly that for any pb there exists a 
homomorphism from the set of states of pb to the one of pmin. At the end 
of the chapter, such homomorphisms will be used to provide a categorial 
representation of backtrack Undo. In fact,we will prove that the class of 
all the backtrack Undo of the same original PIE P is a category and that 
pmax and pmin are the initial and terminal element of such a category. 

7.1 The 111axhnal backtrack U ncla 

In this Section, we are going to introd lice a backtrack Undo with the char­
acteristic that the set of state is as "big" as possible (in the sense of the 
reachable states). V/e will refer to such a PIE ·as pmax, the maximal back-

11.5 
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Tn effsp rt-.-------:->.- H 

I 

H __ I_.....,.>~ S 

Figu re 7.1: pmax is an encapsulation of P. 

track Undo. The word "maximal" is due to the fact that, as we will prove at 
the end of this chapter, pmax is maximal in the class of the backtrack Undo 
of the same original PIE P. We can define pmax as follows: 

Hmax Ilb 
sma:l.' H 
[max ef f sp 

eff max ef f sp 

]J1'ojma.x /(h) 

Such a PIE is a backtrack Undo of P, and this is proved in the following 
Lemma: 

Lemma 7.1 pmal' is backtrack Undo of P. 

Proof: To prove this Lemma, we have to show that: 

(i) pmax is a conservative encapsulation of P; 

(ii) equations El and E4 are satisfied. 

By applying Theorem 6.1, in order to prove that pmax is a conservative 
encapsulation of P, we need to prove that it is an encapsulation of P and the 
conservativeness of history holds. This means that we have to show that both 
the diagrams of Figure 7.1 and Figure 7.2 commute. The commutativity of 
diagram in Figure 7.1 is obvious, since the upper and lower path, starting 
from Hb to S are equa.J, while the commutativity of the diagram in Figure 7.2 
is given by the definition of effS])' 

Consider the rloitma.r functio'l1 and initial state soax defined as follows: 
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rf . '""" c ~If> 
<> ".-r 

". 
./ 

1< effsp effsp , , 
<>'....l... 

H . '""" c ~H 

Figure 7.2: Conservativeness of history for pmax . 

doit max : H X A -+ H 
doitmax ( < >, Undo) 
doitmax(h, c) 
doitmax(h, Undo) 
80wX 

=<> 
= h .--- c 
= chop! (h) 
<> 

(1) 
(2) 
(:3) 
( 4) 
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If such a doitmaa; is the state update function corresponding to Imax, 
then, in order to verify that the equations E1 and E4 hold, we have to verify 
that 

(a) doitmax(.sonax, Undo) = 8ou ', 

(b) doitmax(doitmax(8'hwx, c), Undo) = 8h 

Clearly, both (a) and (b) hold, bu t we have to prove that doitmax corre­
sponds to rmaJ.' (and so also show that is pmax is monotone). At this aim, 
we need to prove that: 

(i) ImaJ-' ( <» = 83W .1.'; 

(ii) pnaJ.'(h.-.. .1:) = doitmaJ.'(I!llrLJ'(h) , ,1:) 

where x E A, that is it may be an ordinary command or an Undo. 
We will prove before (i): 

pwa, ( < » = eff sp ( < > ) 
=<> 

def. of Imax 

def. of eff sp 

def. of 80ax 
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o(i) 

In order to prove (ii) we have to consider two cases, (iiI) in which x is 
an ordinary command C E C, and Ui2) in which x is an Undo. 
(iid x = C 

Left 

pwx (h /""', c) = ff f sp (h /""', c) 
= (:If sp (h) /""', c 

doitma~' (1m".,. (II), c) = doitTlU.LX (eff sp ( h) , c) 
= effsp(h) ~. c 

So, left-hane! sick ane! right-hand side are equaL 

(iiz) x = Undo 

Left 

/1JWi'(h ,r-"o, fTndo)= Effsp(h ---. Undo) 
= CIlOPl (effsp (h)) 

doitma3'(lmax(h) , Undo)= doitmal'(effsp(h) , Undo) 
= chopdeffsp(h)) 

So, left-hand side and right-hane! side a.re equa.l. 

def. of Imax 

def. of eff sp 

def. of Imax 
def. of doitmax 

def. of f11wx 

def. of doitmax 

def. of Imax 
def. of doitmax 

00 
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7.2 The 111inhllal backtrack U ucla 

As pmax represents the maximal backtrack Undo, similarly we can find the 
minimal backtrack Undo. Such a backtrack Undo should have the set of 
states as "small" as possible. We will refer to such a PIE as pmin. Its 
characteristic is that its state is a seq uence of states (of the original system) 
with the peculiarity that instances of the initial state are omitted from the 
beginning of the sequence. So, if the user in the initial state performs some 
actions which does not change the state, then there is no trace of such 
actions, since, by perfoming Undo, we will not change state. We can define 
pmin as follows: 

H min = Hb 
smin = S'" 
s~in =<> 
doitmin : smin X A -t smin 

doitmin( <>, c) =< doit(so, c) > 
doitmin( <>, c) =<> 
doirnin(hs, c) = lis ~ (doi/(last(h s), c) 
doitmin(hs, Undo) = chopl (h s) 

eff min = eff sp 

projmin : smin -t S 
p/'ojmin( <» 
projmin(hs) 

= So 
= /ast(h s ) 

doit(so, C) =P So 
doit(so, C) = So 
hs #<> 

The interpretation function [min is not explicitely defined above, as it 
is obtained by cinstruction from doit""·i,,. using the standard construction as 

introduced at the end of Section 1.7.2. As for pma.t·, also pmin is backtrack 
Undo of P, and this is proved b~' the following Lem ma: 

Lemma 7.2 pmin is a backtmck lindo ofP. 

Proof: To prove that pmin is backtrack Undo of P . we need to show that: 

(i) equations El and E4 are sat.isfi('d: 

(ii) pmin is a conservative encapsulation of P. 

To prove (i), we have to show that 
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(a) 

doitmin(s(fin, Undo)= doitmin «>, Undo) 
= chop1 «» 

(b) 

=<> 
_ ~mi'li 
- '''0 

def. of s(fin 
def. of doitmin 

def. of chop1 
def. of s(fin 

doitmin(doitmin(hs, c). Undo)= dritmin(hs ..---, doit(last(hs) , c), Undo) 
= chopdhs ..---, doit(last(hs), c)) 
= hs 

D(a) 

def. of doitmin 

def. of chop1 
def. of chop1 

D(b) 

Now, to provc that pm in is a conservative encapsulation of P, we need 
to prove that pmin is a n encapsulation of P , there is conservativeness of 
history and then we can apply Theorem 1. Since Hmin = Hb = Hmax and 
effmin = ffrs p = efrmnl·, then the diagram of the conservativeness of history 
for pmin is the same as in Figure 7.2, which commutes by definition of eff sp' 

So we have only to prove that pml11 is an enca.psulation of P, that is the 
diagram of Figure 1.:3 commutes. 

Such diagram comJlllltes if 

The proof is done by structural induction on h. 
\\'e have to (onsiclpr the the following cases: 

( 1) base case h = < > ; 

(2) gencral casp II = h ~ cll , Cu = c: 

(:3) general case II = h .---. C Il , Cll = Undo. 
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progmin 

I >s 

Figure 7.3: pmin is an encapsulation of P. 

(1) base case, h =<> 

Left 

[(effsp«») = [( <» 
= 80 

projmin(Imin( <»)= pl'ojmin(so,in) 
= pl'ojmin«» 

= 80 

(2) General case, h = h r-- cu , e(l = c. 

def. of eff sp 
def. of [ 

def. of [min 

def. of serin 

def. of projmin 

Assume that J(effsp(h)) = projmin (J l?1i'f1 (/i)) , then prove that 
J(effsp(h·,", c)) = j)ropnin(Imin(h ~. c)) 

Left 

[( ef f sp (h ""' c)) = J ( ef f sp (h) '"""' c) 
= doit(I(eff.,p(h)),c) 

def. of eff sp 
def. of J 

121 

D(l) 

= doit(pl'ojmin(Imin (h)) \ c)' indue. hypo on J(effsp(h)) 
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Right 

By definition of ptin we have that: 

pl'ojmin(I7nin(h,......" c)) = propnin (doitmin (Imin (h) , c)) 

At this point, the argument of doumin has h as length, so we can apply 
structural induction. This means that, for that argument, we have a con­
servative encapsulation, so we ca.n apply condition C5 (conservativeness of 
state) on ]J'1'ojmin and doitmin, obtaining: 

0(2) 

(3) General case h = h ........, cu , Cu = Undo. 
\Ve have two differcntia.te two subcases, depending on the nature of the 
history: 

(3a) h = Undo)) 

(3b) h = hk ---- (' ~. Undon - k - 1 

(3a) 

Left 

By definition of Effsp, we have t.hat 

that is equal to 80 by definition of I. 

Right 

For propert~r P:3 of Proposition 6.2, for which Imin(Undon) = sWin , we 
have that 

which, by definit.ion of pl'Opnin, is equal to 80. So, left-hand side and right­
hand side are eqllal. 

D(3a) 
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(3b) h = hk ~ c"""' Undon- k- 1 

Left 
By definition of Undo, we have that 

J(effsp(hk """' C """' Undon- k- 1 ~ Undo)) 
= J(effsp(hk ,.......... C ~ Undo,,"", Undon- k - 1 )) 

which, since eff sp satisfies equation E1, becomes: 

123 

The argument of the eff sp is shorter than h, so, by applying structural 
induction we have that 

Right 

By definition of Undo, we have that 

projmin(Imin(hk /""'-. c /""'-. Undon- k - 1 /""'-. Undo)) 
= pl'ojmin(Imin(hk ------- C """' Undo,,"", Undon- k- 1 )) 

Since El holds, we have that 

projmin(Imin (hk"""' C /""'-. Undo,,"", U ndon- k - 1 )) 

= ]Jl'ojmin(hk"""' Undon-~'-l) 

So, ]pft-hand side and right-hand side are equa.l. 

7.3 Existence of a h011101110rphis111 for pmax 

00 

In the previous chapter, we proved that all the backtrack Undo of the same 
PIE are behaviourally equivalent, in t.he sense of the effective history. But 
we had not yet the suitable information in oreler to tell something also on 
the sets of states of the considered backtrack Undo. The following theorem 
express a relationship between the set of states of pmax and the one of 
a general backtrack Undo pb, both of them backtrack Undo of the same 
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H >s 

Figure 7.4: Encapsulation of the maximal PIE and of a backtrack undo of 
the same original PTE P. 

1--------;>~ Sb 
I 

effsp pro] 

I 
H >S 

Figure 7.5: The homomorphtsm between the maximal PIE and a backtrack 
unclo of the same origina.l PIE P. 

I . 
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original PIE P. The meaning of this theorem is that, even if we cannot have 
all information of the sets of states of the backtrack Undo, there is a kind of 
upper bound on such information and such upper bound is represented by 
smax. We cannot have more information (in sense of reachable states) than 
smax. 

Theorem 7.1 Given a PIE pb and the PIE pmax, both 01 them backtrack 
Undo 01 the same original PIE P, then there exists a homomorphism I, 
I : smax -+ Sb, such that the diagram 01 Figure 7.4 commutes. 

Proof: Considering the definition of pmax, we can redraw the diagram 
of Figure 7.4 as in Figure 7 . .5. The last commutes if it commutes for any 
path starting from the source node JIb and arriving to the target node S. 
This means that we have to prove that the square and both the triangles 
commute. Since pb is a backtrack Cnrio of P, then the square commutes. 
Now, we can redraw the two triangles into the square of Figure 7.6. Such 
a square, without the I function, commutes beca\lse, due to the fact that 
both pmaJ: and pb are backtrack Undo of the same PIE P, we have that 
'Vh E Hb. I(eftsp(h)) = proi(Ib(h)). When we add the I function, we 
don't need to prove the commutativity of both the triangles, but only of 
the upper-left one. In fact, if the last commutes, since ell sp is surjective, 
then, by exploting the composition of fu nctions and the commutativity of the 
square, we can easily derive the commutativity of the lower-right triangle. 
So, our thesis becomes to prove that 'Vh E Hb. [b(h) = I(ellsp(h)). In 
the upper-left triangle, the I fll nction represents a 0 - rnorphism between 
pmax and pb . 

To prove this theorem, we need to introduce a function, nat: H -+ H b, 

which is the natural injection of' II in lIb. Such a nat function is the right 
inverse of eft sp' so that ell sp 0 nat = id. \Ve assert that I = 1° 0 nat is 
a suitable function producing the rpqllired O-morphism between pmax and 
ph. Considering this choice of I and t.he definition of pnax, the thesis of this 
theorem becomes to prove that 

'Vh E HO. [b(h) = [O(natkU8P(h))), 
that is the diagram of Figure 7.G cOlllmutes. Also this proof is done by 
induction. \Ve consider four different cases: 

(a) h =<>; 

(b) h=h'------c; 
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I I 

pro] b >s 

Figure 7.6: The O-morphism f. 

(c) h = Undo7l
: 

(d) h = hk --- c ---. UIIr!On-k-l. 

(a) h =<>. 

Left 
By definition of Jb we have tha.t Jb( <» = sg. 

Right 
By definition of eff.sp we have that: 

Since nat is the nat.u ral injection of H in Hb, then we have: 

which, by definition of lb, is equal to sg. 

(b) h = h' ---. e. 
Assume that Jb(h) = Jb(nat(tfJdh))), prove that 

Jb(h ~ e) = Jb(lIrt.t(efh(h ~ e))). 

Left 

D(a) 
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By definition of Jb we have that Ib(h r--. c) = doitb(Jb(h), c). 

Right 
By definition of efh we have that 

Similarly, by definition of nat, we have that 

By definition of Jb we have that: 

By applying inductive hypothesis on the lb, we have: 

so, the left-hand side and right-hand side are equal. 

D(b) 

(c) h = Undon . 

We need to prove that Jb(Unr/o,,+l) = Ib(nat(effsp (Undon +1 ))). Left 

By Property P;3 of Proposition G.2, we have that Jh(Undon +1 ) = sg. 
Right 

By Property Pl of Proposition 6.1. \\'e have that Jb(nat(eJJs p (Undon+1 ))) = 
Jb(nat«») 
which, by definition of nat is 

and the last, by deri ni tion of t,. is ('q II al to sg. So. the left-hand side and 
right-hand side are equal. 

D(e) 

(d) h = hI" ---- C ---.. Undon-",-l. 
Assume that the inductive h~'pothcsis holds for all h' where length(h') ~ 

n, prove that 
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[b(hk .--.. c ~ Undon - k- 1 ~ Undo) 
= [b(nat(effsp(hk ~ c~ Undon - k- 1 ~ Undo))). 

Left 
By property of Undo, we have tha.t 

[b(hk ~ c ~ Undon - k- 1 "'" Undo) 
= Jb(hl" ---. c ~ Undo·""'"' Undon - k- 1 ) 

which, by applying equation E1, becomes equal to Jb(hk ~ Undon - k- 1 ). 

Right 
By applying Property P2 of Proposition 6.1, we have that 

Jb(nat(effsp(hk ~ c ---- Undon - k - 1 ---- Undo))) 
= [b(nat(elfsp(hk ---- Undon - k - 1))) 

Since this sequencc is shorter than n, then we can apply inductive hy­
pothesis, obtaining: 

so, left-hand side and right ha.nd side are equaL 

DO 

7.4 Existence of a h011101110rphis111 for pmin 

As we wanted to prove (ha.t pmaJ.· is the maximal backtrack Undo, similarly 
we ,vant to prove that pmin is the minimal one. Being the structure of 
pmin more complex than pma.T, we have to introduce functions and prop­
erties that we will use in the following proofs. We are going to start by 
introducing some functions useful while proving that pmin is monotone. 

Proposition 7.1 Gil'en the function <Pi : Hb -+ S such that 
Vi > 0, <pi(h) = J(choPi(effsp(h))), then the following properties hold: 

<Po(h /"'0. c) 
<pi(h ---- c) 
<pi(h ~ Undo) 

doit(<po(h). c) 
<Pi-l (h) 
<Pi+l (h) 

P4 
P5 
P6 
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Proof: The proof is done by induction. 
(P4) 

By definition of cPi, we have that 

cPa(h ---- c) = J(chopa(effsp(h ---- c))) 

which, by definition of choPa is equal to J(effsp(h ---- c)). By definition of 

eff SP' we have that 

J(effsp(h ~ c)) = I(cffsp(h) ~ c) 

which, by definition of J, is equal to r/od(I(effsp(h)) , c). But, by definition 
of cPo, we have that 

doit(I(effsp(h)), c) = dOit(6?O(h), c) 

(P5) 
By definition of 9i, we have that 

<pi(h ~. c) = J(cllOPi(effsp(h ~ e))) 

which, by definition of eff.s)) is equal to J(choP£(cffsp(h) ~ c)). 
By definition of ChOPi, \ve have that 

which, by definition of <Pi, is equal to 0i-l (h). 

(P6) 
By definition of 9i, we have that 

(j)i(h~· Undo) = J(ChOPi(cffsl'(h·--- Undo))) 

By definition of elf sp' we have that 

I(choPi(efIsp(h ---- Undo))) = J(ChOPi(chopdeffsp(h))) 

which is equal to J(ChOPi+dcff.s,,(h)). 

By definition of v?i, we have that 

0(P4) 

0(?'5) 

00 
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Interpretation function of pmin 

In Section 7.2 pmin was defined in terms of its state update function doitmin. 

Although it is possible to derive the interpretation function Imin from that 
of doumin , we will fi nd useful to have an explicit definition of Imin. We 
therefore have to find a suitable interpretation function Imin and we have to 
prove that it corresponds to the downin function. This is formulated in the 
following proposit.ion: 

Proposition 7.2 GiNn the function [min: H -+ S* sach that 

• pnin(h) =< ¢n-dh),4>n-2(h), ... ,4>l(h),4>o(h) >, 
where n ::; lenglh(ejjsp(h)); 

• ~i)i(h) = 80. Vi 2:: II 

then [min corresponds to the doitmin. 

Proof: In order to prove that [min corresponds to doumin , we have to prove 
tha.t: 

where e" indicate'S all ordinary command c E C or an Undo. 

(a) 

Left 

If h =<>, thell hll.r;th(effsp(h)) = 0, so Vi,4>i«» = 80. This means 
that pnin«» =<>. 

Right 
sol,in =<> by definition of satin. 

o (a) 
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(b) For the case (b) we have to consider two su bcases, depending on [min. 
We have to consider the case in which [min(h) #-<> and the other in which 
[min(h) =<>. In the previous one, we have other two subcases: the first 
in which Cu is an ordinary command c E C, the second in which Cu is an 
Undo. Moreover, when [min(h) =<>, we have to consider the case in which 
we perform a command still remaining in the same state, or we perform a 
command and we change state, or we perform and Undo. This cases are 
skematised as follows: 

(b al ) [min(h) #-<>. Cu. = c; 

(b a2 ) [min(h) #-<>, c" = Undo: 

(bod [min(h) =<> . C u = C, doit(so. c) = so; 

(bb2) [min(h) =<> Cu. = c, doit(so, c) #- so; 

(bb3) [min(h) =<>. Cu. = Undo. 

In all the three (Ub) cases. tIle fact that rmin(h) =<> means that 

Vi, cPi(h) = So· 
(bal ) 

Left 
The left side is given by the enunciate of the proposition. 

Right 
By definition of doitmm we have that: 

rloitmin(rmin(h), c) = [mi"(h) ~. (doit(last(I7nin(h)), c) 

Since [""in =< Cf!n-dh) , ¢n-2(h), ... , Cf!dh), ¢o(h) >, then its last ele­
ment is cPo(h). So, b~r applY'ing the definition of [min to the argument of the 
dod. we have: 

[mi71(h) .~ (rloit(lasl(Imi"(h)). c) = rmin(h) ~ (doit(¢o(h)), c) 

By applying porperty Pel of Proposition 7.1, we have: 

[min(h) ~ (doit(oo(h)), c) = ["'in(h) ~ 00(h ~ c) 

which, by definition of [min. becomes: 

[min(h) ~ Cf!o(h ,-... c) 

=< Cf!n-dh),¢n-2(h), .... odh).oo(h),cPo(h ~ c) > 
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By applying property P5 of Proposition 7.1, we have that 

< ¢n-l(h),¢n-2(h), ... ,¢1(h),¢o(h),¢o(h,--, c) >= 
< ¢n(h,--, c),¢n-l(h,--, c), ... ,¢2(h,--, c),¢l(h r--. c),¢o(h ""' 
c) > 

which, by definition of Imin, is equal to Imin(h,--, c). 
So the left-hand side and right-hand side are equal. 

(ba2 ) 

Left 
The left side is given by the enunciate. of the proposition. 

Right 
By definition of r/oitmin, we have that: 

By definition of pnin, we have that: 
chopJ([min(h)) = chopJ« ¢n-dh),¢n-2(h), ... ,¢dh),¢o(h) » 
=< ¢n-dh),(/)n-'2(h),···,¢dh) > 
which, by appl~'ing property PG of Proposition 7.1, is equal to 

< <Pn-2(h .~. Undo), ... , ¢dh.~ Undo), ¢o(h,........, Undo) > 

Finally, by applying aga.in the definition of [min, we have that: 

< <Pn-2(h ~ Undo), ...• ¢dh~· Undo), ¢o(h,........, Undo) > 
= rmin(h .~ Undo) 

So the left-hand side and right-hand side are equa.J. 

(bbl) 

Left 
By definition of pnin, we ha:'e that 

ptin(h,........, c) =< <Pn-l (h ,........, e)" .. , ¢o(h ,........, c) > 
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By applying property P5 of Proposition 7.1, 
we have that Vi > 0, (Pi(h r-, c) = ¢i-1 (h) 

In this way, we can rewrite i7nin as follows: 

]min(h'-'- c) =< ¢n-2(h), ... , ¢o(h), ¢o(h r-, c) > 

Since ]min(h) =<>, that is Vi, ¢i(h) = So, that is 
Vi > 0, ¢i(h r-, c) = So, then irnin is as follows: 

By property P4 of Proposition 1.1 we have that 
¢o(h r-, c) = doit(¢o(h), c). 

Since Vi, ¢i(h) = So, then we have that 

doit(¢o(h), c) = doit(so, c) 

1:33 

We are in the case in which doil(sQ, c) = So, so that, clumping the last 
equalities involving the doit min , we have 

¢o(h,-.- c) = doit(¢o(h), c) = doi/(so, c) = 80 

This means that ¢i(h r-, c) = 80 Vi. including also the case of i = 0. So, 
by definition of rmin , we have that: 

]min(h ~ c) =<> 

Right 
------y; this case, l'nin(h) =<> , Vi, (Di(h) = 80, ctl = c, and doit(so, c) = so. 
So, by definition of doit min , we have t.hat: 

doitmin(lmin(h),c) = doi/min«>,c) =<> 

So the left-hand side and right-hand side are equal. 

(bb2) 

Left 
The proof of the left-hand side of the case (6&2) is the same as the left­

hand side of the case (6btl but the last step. Anyway, in order to avoid to 
lose one's bearing, we report the proof step by step. 

By definition of lmin, we have that 
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[min(h ~ e) =< <Pn-l(h ~ e), ... , <Po(h ~ e) > 

By applying property P5 of Proposition 7.1, 
we have that Vi > 0, <pi(h ~ e) = <Pi-l (h) 

In this way, we can rewrite imin as follows: 

[min(h ~ e) =< <Pn-2(h), ... , <Po (h) , <Po(h,--... e) > 

Since pnin(h) =<>, that is Vi, </)i(h) = So, that is 
Vi > 0, <pi(h ---. e) = 80, then im.in is as follows: 

pnin(h ~ c) =< q>o(h ,-... e) > 

By property P·I of Proposition 1.1 we have that 
<l>o(h ~ e) = doit(~~o(h). e). 

Since Vi, ¢j(h) = su, then we have that 

doi/(<Po(h). e) = doit(so, e) 

that is 

¢o(h """' e) = r/oil(<I>o(h), e) = doit(so, c) 

Since we art' in t\H:' case in which r/oit(so, c) =I- So, then we have that: 

rnin(h "...... c) =< doit(so. e) > 

Right 
--I-n this case, [111ill(lI) =<> , Vi, ~f)i(h) = So, eu = c, and doit(so, c) =I- So. 

By definition of r/oi/m.in, we have that: 

rioi/1Hin (TtlIi7!(h).c) = doitmin«>,e) =< doit(so,c) >. 

So the left-hane! side and right-hane! side are equa.l. 

( bb3) 
This is the case in which rnin(h) =<>, which implies that Vi, <pi(h) = So 
a.nd ell. = Undo. 

Left 
By definition of ["';11, we have that 
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jmin(h. ___ Undo) =< 4>n-dh ""' Undo), ... ,4>o(h r--. Undo) > 

By applying property P6, we have that 

but, since we are in the case in which Vi, 4>i(h) = So, then 
jmin(h ~ c) =<> 

Right 
Since pnin(h) =<>, then we have that 

doitmir!(Imin(h), Undo) = r/Oit",ir, «>, Undo) 

which is equal to <> by definition of doi/ min . 

So the left-hand side and right-hand side are equal. 

7.4.1 A new kind of interpretation function 

13.5 

00 

The jmin function introduced in the previous Section associates a sequence 
of states to any history given as input. But such a sequence is starting from 
a state which is different from the initia.l one. In fact, smin is "smaller", with 
respect to the sets of states of other backtrack Undo of the same original 
PIE P, because it does not consider the initial state, and any its repetition, 
at the beginning of the sequence. Since the difference between pmin and any 
other backtrack Unrlo of the saille original PIE P is exactly in the fact that 
in pmin the sequence of states is chopped when at the beginning we have 
a repetition of the initial state, in order to establish a relationship betwen 
smin and the set of states of another backtrack Undo, we need to introduce 
another interpretation function. Such function should consider also the case 
of sequences of states infinite to the left, that is with any number of initial 
state at the beginning. At this aim \\"(l introduce the following function: 

strip: So 0:;.. -+ S'" 
8t1'ip(lIs) 
8t1'ip(hs ~ 8) 
8t'I'/])(h s ""' so) 
8t1'ip(hs --- 80) 

=<> 
= strip(hs) ~ ."; 

=<> 
= s/ I'ip(h s ) ~ 80 

if hs = So 
if s =1= So 
if 8t1'ip(hs) =<> 
otherwise 
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where Soco is the set of the sequences of states s E S, sequences infinite to 
the left, in which the infinity is given by a sequence of any number of initial 
state. 

Proposition 7.3 Given the st7'ip function as above defined, the following 
property holds: 

8trip(8o """' hs ) = {,<> if hs =<> 
Is if first(h s ) =f:. So 

Proof: To prove this property, we have to consider the case in which the 
sequence of state hs is empty, hs =<>, or not. In the second case, at least 
the first element of hs is different from the initial state. These two cases are 
skematised as foII o\\"s: 

(1) hs =<>; 

(2) hs = 8 .--. 11 . .".<: =f:. 80. 

(1) 
By definition of strip, we have t.hat.: 

.<:tl'ip(so ~<» = sII'11)(S'O) =<> 

(2) 
The proof of (2) is clone by ind uction on h~, 

(2i) base case: h" =< > 
By definition of strip we have that: 

st,.ip(so ~ -" .~ h~) = strip(so ~ 8) = 8t'l"ip(So) /""- 8 = 
<>"""' s =< 8 >. 

(2ii) asslIme valid: 8tl'ip(s'O .--.. 8 """' h~) = 8'--'· h~, prove tha.t 
strip(so """' 8'--'· h~ ~ 8') = 8 ~ h~ ~ 8'. 

By definition of strip, we have that 
8tl'lp(80 ~ -" .~ h~ ~ .. 8') = 811'ip(8'O """' 8'--" h~) ,-.., s', 
Now, we can appl)· inductive hypothesis on the argument of the sh'ip, 

obtaining 8 ~ lI~s ~ s'. Such an equality holds independently if s' is the 
initial state or allot IH'r onc. 

DO 
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Now we can introduce an interpretation function which associates to any 
input a sequence of states infinite to the left. 

Lemma 7.3 Given the function 

I'(h) : Hb -7 Sooo 
I'(h) = So ---- Imin(h) 

then Vh E H b, Imin(h) = strip(I'(h)). 
Proof: The proof follows directly from the properties of the sh'ip function 
and the definition of l'nin. 

DD 

Before to enunciate the theorem of existence of a homomorphism for 
pmin, we need to introduce other funet ions and properties. Indicating with 
5-00 the set of sequences infinite to the left, we can introduce the following 
function: 

g' : 5 b -7 5-0:' 
g'(8) =< ... , gi(8), . ··,90($) > 

where every gi is so defined: 
S'b C' gi:. -7 . .J 

9i(8) = projb(ki(S)) 
where ki = 56 -7 Sb 

1..'0(8) =.<;; 

k i (8) = r!oit b(l'i_l(8), Undo) 

The formal functions !Ji and h'i em ulate the effect of someone experiment­
ing with a system by using the Undo function. From a given starting state 
s, ki(8) gives t.he state of the system after performing i times Undo and gi(8) 
gives the projected state, tha.t is the state of the underlying system without 
Undo. 

Proposition 7.4 Given the junction ki aUOile int1'Oduced, the two jollowing 
properties haIr!: 

P7 

(2) Vi,86 is fixed point for ki. P8 
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Proof: For both the properties, P7 and P8, the proof is done by induction. 

P7 
• base case: i = O. 
Left 

By definition of ki, we have that: 
kl(S) = doitb(ko(s), Undo) = doUbts, Undo). 

Right 
By definition of 1,.:0, we have that 
ko(doitb(s, Undo)) = doilb(s, Undo) 
so the left-hand side and right-hand side are equal. 

•• Assume that ki+ds) = ki(doitb(s, Undo)), prove that 
ki+2(S) = ki+ddoitb(s. Undo)) 
Left 

By definition of I.: i • we have tha,t 
l.:i+2(doitb(s, Undo)) = doi/b{ki+ds), Undo). 
By applying i nd uction to the argu ment of the doitb, we have that: 
= doitb(ki(doitb(s, Cnelo)), Undo). 

Right 

P8 

By definition of h·i. we have that: 
ki+ddoitb(s. Unc/o)) = doitb(ki(doitb(s, Undo)), Undo) 
so the left-hanel side and right-hand side are equal. 

OP7 

To prove t.hat 'ii . ."Ii) is fixed point for ki. means to prove that 'ii, ki(sg) = sg . 
• base case, i = O. 

By definition of h·u. we have that kO(8g) = sg . 

•• Assume that ki(s3) = sg, prove that l.;i+1 (sg) = sg. 
By definition of ki • we have that 
ki+ds3) = doi tb(k;(s3), Undo). 
By applying inductive hypothesis to the argument of the doitb, the right 

element of the above written equality is equal to doitb(sg, Undo). Since pb is 
backtrack Undo of the PIE p, then eq uation El holds, so the last is equal 
t b 
,0 so' 

OP8 

" , -
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The kj function was introduced in order to define g', but we have not 
yet introduced properties regarding the function g' itself. g' is a function 
which associates with a state s E Sb a sequence of states infinite to the left. 
These are the states that would be obtained by applying Undo repeatedly 
to the original state s. Remember that we are only interested in reachable 
states, that is those in the range of the interpretation function lb. This 
means that we only want to talk about those states s E 5b which are given 
by the interpretation of a suitahle history hE JIb. 

\Vhat we want to prove no\\", is that the infinite part of each g' is given 
by a sequence of any number of initial state sZ. This is expressed in the 
following proposition: 

Proposition 7.5 Giuen the g' fund ion, so defined 

'S'b S'-'x, 9 : .. -7 •.. 

g'(s) =< .... g;(8) •... , ,'70(8) > 
where each gi is so defi neci: 

gi : Sb -7 S 
Yi(8) = ]Jl'Ol(!,'i(8)) 
where /,;;(8) = Sl.> -7 Sb 

/,;0(8) = s 
k j (8) = doitb(!"i_ds), Undo) 

then "Is E Jb(}[b) 311 E N st. Vi > Ii y;(Jb(h)) = 80. 

Proof: Before to start the proof, \\'{' have to do a couple of considera­
tion. First. considering that the [b function is surjectiveon [b(J:[b), we could 
rephrase the enunciate of the proposition as follows: 

Vh E JJb:l n EN st. Vi> n. y;(I°(h)) = 80. 

Seconcl, if we observe such an enunciate, \\'e can see two symbols V, one 
for i and the other for h. This Ill<.'ans that we have to do two inductive 
proofs, one on n an the other Oil h, We call choose n = lenyth(h).Note, 
we do not claim that length(h) is the millimal 'Il, just that it satisfies the 
conditions for Proposit.ion 7.5. We are going to start t.he proof working on 
i. 

Since gi(Ib(lI)) = p1'oi(k i (Ib(h))), th<.'n, for the con:=>ervativeness of state, if 
kj(Ib(h)) = sZ, we have Yi(Jb(h)) = 7)/,O/'(SZ) = 80 and the proof is done. So 
we have to work on ki(Ib(h)). 
Ind lIction on i 
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Given an h E Hb, let n = length(h). We will assume that kn(Ib(h)) = sg 
(this will be proved below by induction on n). Given this assumption, we 
shall prove that V oj > n ,ki(Ib(h)) = sg. In fact, we will prove that given 
the choice n = lengt:h(h) we have the stronger result that: 

Vi> n, ki(Ib(h)) = sg. 
It is sufficient to prove this as gj(Ib(h)) = projb(ki(Ib(h))), and so, 

because of the conservativeness of state, if ki(Ib(h)) sg we also have 
g;(Ib(h)) = ]JI'O/,(8g) = 80 and the proof is done . 

• base case, 'i = II. It is given by definition . 

•• General case. 
Assume that /,;i(l&(h)) = sg. Prove that ki+l(Jb(h)) = sg. 

By definition of ki, we have that 

By applying the inductive hypothesis to the argument of the doitb, we 
have: 

which is equal to 8~ since equation E-I holds. 

Induction on h 
Let 11 = len.r;/h(h) prove that Vh E JIb kn (1b(h)) = sg. 

• base case II = < > 
Since 11 = l('lIfl/li(h). if h =<>, th~'n in t.he base case we have that 12 = O. 

So we have to prove that ko(1b«») = 8g. 
By definition of "'i. we have that: 

•• Assume that kn(l'!(h)) = 83, prove that kn+1(Ib(h ----. e)) = sg. 
Note that, by increasing the length of h, from h to h '"""' e, also 12 in­

creases from 11 to II + 1. .Moreover, since for Theorem 7.1 (existence of 
a homomorphism for pmuJ.') vve have that Jb(h) = [b(12at(eJJsp(h))), and 

nat(eJJsp(h)) E II C JIb, it is sufficient to do the proof Vh E H, so we can 
don't consider the' case in which e = Undo. 

By applying prop('J'ty P7 of Proposition 7.4, we have that 
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I 
H ------i>~ S 

Figure 7.7: Encapsulation of the minimal PIE and of a backtrack undo of 
the same original prE P. 

Since P is monotone, we can exp['('ss the doit b in terms of the Ib and, 
since equation E1 holds. we have: 

By applying inductive hypo1hcsis. we have: kn(Ib(h)) = sg. 

DO 

7.5 Existence of a h011101110rphis111 for pmin 

Besides the relationship between the sc1 of states of pmax and a.ny backtrack 
Undo pb, we could also find a similar relationship between the set of states 
of any backtrack Undo pb and pm in. both of them backtrack Undo of the 
same prE P. The meaning of stich relationship is that smin represents the 
"smallest" set of states which still allows the user to perform backtrack Undo. 
In some sense. we can see smin as a lower bound of the set of states of a.ny 
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effsp proj 111m 

I 
H >s 

Figure 7.8: The homomorphism between the minimal PIE and a backtrack 
unclo of the sanl(' original PIE P. 

backtrack Undo. We cannot have less information (in sense of reachable 
states) than 8 m 

II! • The above mentioned relationship is forma.lized in the 
following theorel11: 

Theorem 7.2 (,' i /'(/1 (l PIE pb and the PIE pmin, both of them backtrack 
[Tndo of the sallie original PIE p, then there exists a homomorphism g, 
g : 8 b --+ smin, slIch I hat the diagram of Figure 7.7 commutes. 

Proof: Considering the definition of pmin, we can redraw the diagram 
of Figure 7.7 as in Figure 7.8. The last commutes if it commutes for any 
path starting from the source node [-Jb and arriving to the target node S. 
This means that \\'e' have to prove that the square and both the triangles 
commute. Since' pmin is a backtrack Undo of P, then the square commutes. 
Now, we can redraw the two triangles into the square of Figure 7.9. Such 
a square, without. t.he g function, commutes because, due to the fact that 
both pmin and pb are backtrack Undo of the same PIE P, we have that 
'1h E lib e llrojmin(Imin(h)) = J(cffs]J(h)) = llrojb(Jb(h)). Following the 
same reasoning as in the case of the existence of a homomorphis between 
sma;r and Sb, when we add the g function, it is sufficient to prove the com­
mutativity only of the upper-left triangle, that is we have to prove that 
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Ib 
If---~ 

s* 
• 111 In >s 

proJ 

Figure 1.0: The O-morphism g. 

Vh E Hb, Jmin(h) = g(Ib(h)). Similarly for pmax, the 9 function represents 
a 0 - morphi8m, this time between po and pmin. \Ve choose our 9 function 
as follows: 9 : S° -+ 5* such th<'lt 

c s = { 8trip(g'(s)) if 8 E Jb(fJb) 
9 (-) < > otherwise 

Note that the second part of the definition covers unreachable states. It is 
purely to make the function 9 total <'Ind the value <> is arbitrary. 

In Theorem 1.1 we proved t hat for any pb backtrack Undo of of a PIE 
P, it is possible to find a homomorphism between smax and Sb. We proved 
this by introducing the nat function. nat: H -+ HO, which is the right in­
verse of the Eff sp' Since pb may be any backtrack Undo of the same PIE 
P, then there exists a homomorph is ill also from snwJ.· to smin. By applying 
Theorem 1.1 to pb and pmin respectivdy, we have the two homomorphisms 
Jb 0 nat (for pb), and Jmin 0 not (for pmin) such that the diagram of Fig­

ure 7.10 commutes. Considering that nat is the natural injection of H in 
HO, and that it is the identity on II C HO, we can restrict our application 
domain to any h E H instead of' lib. So, Ollr thesis becomes to prove that 

Vh' E If, g(Ib(not(h'))) = J"';I1(7Io/(II')) 
that is Vh E II c HI\ g(Ib(h)) = rm'fl(h). 

Since Vs E Jb(H b), [}(8) = strip([}'(s)) and 
Vh E H b, Jmin(h) = 8trip(I'(h)). in order to prove that Vh E H c 
Hb, g(1b(h)) = ptin(h) it is sufficient to prove that 
Vh E H, g'(1b(h)) = J'(h). 
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If Imin 

">-

:,\SP 
I id I H 

I 

: ffSp 
Ib 

If 

Figure 7.10: Another diagram of the O-morphism g. 

l'doreover, since 

g'(Ib(h)) =< .... £Ji(Ib(h)), ... , gl (Ib(h)), go(Ib(h)) >; 
1'(11) =< ... ,@i(h), ... ,¢dh),rPo(h) >; 
¢i(h) = J(chojJi(clfsp(h))), 

we need to prove that tli, tlh E H, gJJIJ(h)) = ¢i(h). 

0 
0 

Let us to do some other transformation before to start the inductive 
proof. Since eff .. ]> is the identity on H, then J(choPi(eJJsp(h)) = I(choPi(h)). 

Furthermore, by dpfinition of gi, we ha.ve that gi(Ib(h)) = projb(ki(Ib(h))). 
So, we have to provp that: 

The proof is dOlw by applying multiple induction, mathematical induc­
tion on i and st.ructural induction on h. 'Ve have two base cases (one in 
which h =<> and i is whatever, the other in which .j = a and h is what­
ever) and a general one (in which, fixed any i and fixed any h for which the 
hypothesis hold, we have to prove that it holds also for i + 1 and h --.... c). If 
we represent in a Cartesian plane the a.pplication domain of the theorem's 
thesis, we can label one axis with i and the other with h, then the two base 
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cases correspond to the proof of the thesis along the axes, while the general 
case corresponds to prove it in the first quadrant of such a plane, moving 
along any diagonal. 

Now we can start the proof. 

• First ba.se case, h =<>, Vi. 
We have to prove that projb(ki(Jb«»)) = [(ChOPi«»). 

Left By definition of [b(h), we have that 

By applying property P8, since .'ill is fixed point for ki' we have that: 

which is equal to 80 by applying conservativeness of the state. 

Right By definition of ChOPi, WE' have that 

[(ChOPi«») = 1«» 

which is equaI to 80 by definition or J. So left-hand side and right-hand side 
are equal. 

•• Second base case, i = 0, Vh; 
\Ve ha.ve to prove that projb(ko(I°(h))) = I(chopo(h)). 
Left By definition of ko we have that 

By applying condition C1 of the encapsulation, we have that 

which is equal to [(h) because (-IrS)) is the identity on H. 

Right 
By definition of chopo we have that J(chopo(h)) = J(h). 
So left-hand side and right-hand side are equal. 

D 

D 
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Figure 7.11: Two O-morphism [ and g . 

••• General case. Assume that pl'ojb(ki(Ib(h))) = I(ehoPi(h)), 
prove that pl'o/'(k i+! (lb(h ~ e))) = I(ehoPi+1(h r--, e)). 

Left Since pb is Illonotone, we can express the the interpretation [unction in 
terms of the doit b, t.hat is: 

By applying property P7 of Proposition 7.4, we have that: 

The last., by equation El, is equal to ]J'l'ojb(k£(Ib(h))). Now, by applying 
inductive hypothesis, w(' have: 

Right 

By definition of ('hOPi we have that: 

So the Icft-hand side and right-hand side are equal. 
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P I 1 

~} 

E, 

fg 
E3 

Figure 7.12: Composition of tvvo O-morphism. 

7.6 Categorical representation of backtrack Undo 

The O-morphisms between pm.u· and any pb and between any pb and 
pmin establish a kind of partial order starting from the richer set smax 

and arriving to the "smaller" set sm;!!. The graphical representation of such 
homomorphisms with arrows suggests us that the class of all the backtrack 
Undo of the same PIE P may be a category under O-morphism, while the 
partial order suggest us that P')!!",. and pmin may be respectively the initial 
and terminal objects in such a category. In order to prove these "sugges­
tions", 'we need to use some theorems and lemmas that we are going to 
introduce. We start with the following Lemma: 

Lemma 7.4 (Composition of O-morphisms) The composition of two 0-
morphism., between PIE is .,till ([ 0-lIlOrphisIH. 

Proof: Consider two PIEs PI =< P, II, £1 >, P2 =< P, h, £2 > 
and the two O-morphisms f : El -7 £2 and 9 : £2 -7 E3 such that the 
two diagrams of Figure 7.11 commute. In order to prove that the diagram 
of Figure 7.12, which represent.s the composition of the two O-morphism 
commutes, we have to prove that "1.7' E P, 13(:r) = !J(.f(Jdx))). 
The right-hand side of this equation. by using the commutativity of the left-
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Figure 7.1:3: Uniqueness of O-morphism between PIE on the reachable effects. 

hand side diagram of Figure 7.11, is equal to g(lz(x)), which, by using the 
commutativity of the other diagram of Figure 7.11, is equal to I3(x). 

DO 

Lenuna 7.5 (Uniqueness of O-morphisms) Two O:.morphisms bet~een 
PIE (/re unique on the f'eachable eJJec/8. 

Proof: Consider t.he two PIEs PI =< P, h, E1 > ,P2 =< P, lz, E2 > and 
the two O-morphisms J, f' : E1 -+ E2 • We want to prove that f and l' are 
coincident on til(' reachable effects. Since f, l' are O-morphisms, then the 
diagram of Figure 7.1:3 commutes, that is f 0 h = 12 = l' 0 h. This means 
that \:Ip E P, J(Jd}))) = f'(Idp)), that is \:Ie E h (p), f(e) = 1'(e), which 
implies that f == .f' 011 the range of 1[. 

DO 

Considering the properties of O-l110rphisms introduced with the two previ­
OllS Lemmas, TI1<'orell1 '/.1 and Theorem 7.2 on the existence of O-morphisms 
between backtrack Undo PIEs, we can enunciate two theorems (one for 
P'IlWJ' and the other for pmin) in which the characteristics of maximal­
ity /millilnality are expressed in terms of existence and llllicity ofO-l110rphisms 
between PIEs: 

Theorem 7.3 (Maximality of P'IIw'(') pmax is maximal in the class of the 
backtrack Undo oj the same PIE P. in the sense that, given any backtrack 
lhido pb Jor p, I here e:l'i:!;/s a lt17.iq'lle O-morphism from pmax to pb. 
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Proof: The existence of such O-morphism is given by Theorem 7.1; the 
uniqueness is ensured by Lemma 7.4. 

00 

Theorem 7.4 (Minimality of pmin) pmin is minimal in the class of the 
backtrack Undo of the same PIE P, in the sense that, given any backtrack 
Undo pb for p, there exists a uniquE O-morphism from pb to pmin up to 
equivalence on the reachavle eIre-cts. 

Proof: The existence of sllch O-morphism is given by Theorem 7.2; the 
uniqueness is ensured by Lemma.7A. 

00 

The successive step is to represent. the characteristics of maximality /minimality 
in terms of ca.t.egory. In order to clo t.his, we have to introduce the definitions 
of graph and category [77, 7]. 

Definition 7.1 (Graph) A Craph ~I is a quadruple 9 = < N,E,s,t > 
where N is a class of 'nodes, E is (J class of edges. and s, t are two mappings 
s, t.: E -+ N . called source an.d target respective/yo sllch tha.t 
Vf E E, f: a -+ b, a,v E I'l, s(f) = (J and f(f) = V. 

Definition 7.2 A Category C is ([ triple C = < ge, _0 _,icL > where ge is a 
graph gc =< 0, A., s, t > in wll ie-h the nodes are called ovjects and the edges 
are called alTOWS: (lnd _ 0 _ (lnd i(L are the two followin.g mappings 
1) composition. _ 0 _ : A. x A -+ A 
2)icL: 0 -+ A 
where the composition. is dcJiI/(r/ fol' al1Y pail' of (IT'7'OWS f : a -+ band 
g : b -+ c. giving a rEsult go f : (f -+ ('. i(L is defined 'i/o E 0 giving an (/1'1'OW 

ido : 0 -+ o. an.d the following jJl'OjJl'I'lies hold: 
a) (h 0 g) 0 f = h 0 (g 0 f)whel'( II : (' -+ d; 
b) f 0 ida. = f = irh 0 f· 

In the following, we are going to illtroduce the definition of initial and 
terminal object in a category. \Ve want to prove that the class of all the 
backtrack Undo of the same PIE P is a category and that pmax and pmin are 
the initial and terminal object respectively. The meaning of this theorem is 
that, even if we cannot know t'veryt hing on the sta.tes, due to the fa.ct the 
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interaction is non-detenninistic (non-determinism also due to Undo), we can 
try to "approximate" the set of states with a "bigger" and "smaller" set. 
We cannot say anything on the relationships between two general backtrack 
Undo of the same original PIE P , but, for any of them, we can find a kind 
of upper and lower bound. 

Definition 7.3 (Initial object) An initial object in a category is an object 
a, 8uch t.hat for (Iny oiJjpct. b, there is a unique arrow f : a -+ b. 

Definition 7.4 (Terminal object) A terminal object in a category is an 
object b, such t.hat for any object a, thel'e is a unique arrow g : a -+ b. 

Theorem 7.5 The class of all the backtm,ck Undo of the same PIE P forms 
a category under O-morphism, the initial and tenninal objects of which are 
respectively pm".)' and pmin. 

Proof: In order to prove that the class of all the backtra,ck Undo of the 
same PIE P is a category under O-morphism, we have to: 

(i) define a graph ~;c =< 0,.4, s, t >; 

(ii) define the mapping composition; 

(iii) define the mapping irL; 

(iv) prove the a:;sociativity [or composition; 

(v) prove the iclcn t.i I Y for com posi t.ion. 

We start by ell-fining the graph ~;c =< 0,.4, s, t > 
(i) 

· ° = the etass of pb backtrack Undo of the same original PIE P; 
• A = equivalence' class('s of O-morphisllls, that is an arrow is an equivalence 

class [J] under the following equivalence: 
given f: PIE1 -+ PIE2 , f': PIE1 -+ PIE2 , then 
f == /' if f(·1:) = /,(;1'). Vx E l'ange(IJJ; 

• sOllrce and ta,rget lIlappings 8, t are so defined: 
Vf: PIE1 -+ PIE2, then 8([1]).= PIE1,t([J]) = PIE2. 

O(i) 
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(ii) Given the O-morphisms f : PI E1 --+ PI E2, 9 : PI E2 --+ PI E3 and the 
com position 9 0 f : PI E1 --+ PI E3 , \ve define the com position of arrows as 
[g] 0 [1] = [g 0 fl· 
Now we have to prove that such a definition is well formed, that is if g' == 9 

and f' == f, then g' 0 l' == go f. 
Since g' == 9 and l' == f, then g' and l' are both O-morphisms. For 
Lemma 7.4, the composition of O-morphism is still a O-morphism, so g' 0 l' 
is a O-morphism from PI E1 to PI £:3. t-.Toreover, by applying Lemma 7.·5 
(uniqueness of O-morphism), we have that [/01' == g 0 f. 

D(ii) 

(iii) Now we can define the iclentit~·: 
Given any PIE E 0, \ve define idpIE = [idE]. 
Clearly, idE for111s a O-morphism. so idpIE is an arrow with the given PIE 
as source and target. 

o (iii) 

(iv) In~rder to prove the associativit:v for composition, we have to prove 
that 
[h] 0 ([g] 0 [1]) = ([h] 0 [g]) 0 [1]. 

Left 
[h] 0 ([g] 0 [1]) = [h] 0 [g 0 f] = [II 0 Cr; of)] = [(h 0 g) 0 f] 

Right 
([h] 0 [g]) 0 [1] = ([h 0 g]) 0 [1] 

so the left-hand side and right hand side are equal. 

D(iV) 

(v) Given [1] : PI £1 --+ PI £2. ill ol'ckl' to prove the identity for composition, 
we have to prove that, 
[1] 0 idpIE1 = [1] = idpIE2 0 [.f]. 

Left 
[1] 0 iciPIE1 = [.flo [irlpIEJ = [.f 0 idpIF:1 ] = [1] 

Right 
idpIE2 0 [.f] = [idpIE2] 0 [1] = [idpIE'2 0 fl = lfl so the left-hand side and 
right hand sicle are eq ual. 
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D(V) 

To finish the proof of the theorem, we have to prove that pmax is the 
initial object and pmin is the terminal object. Because of Theorem 7.1, 
'ipb E 0, :3 O-morphism hst. h :pmax -+pb. Such O-morphism is unique 
for Lemma 7.5. Therefore there is a unique arrow [h] :pmax -+pb, that is 
pmax is initial. 

Because of TheOi'C'1l) 7.2, 'ipb EO :J O-morphism h'st. h :pb -+ pmin up 
to equivalence on reachable states. Such O-morphism is unique for LeI1lIna 7.5. 
Therefore there is a. unique arrow [h'] :pb -+pmin, that is pmin is terminal. 

DO 

Corollary 7.1 pnwJ' and pmin are the 'Unique maximal and minim:(LI PIE 
in the category of thE bock/lnck Undo of P. 

Proof: For Theorell) 7.1 pmax is maximal; for Theorem 7.2 pmin is minimal; 
for Theorem 7.5 Pl1w.,' and pmin are respectively the initial and terminal 
element in the cat('gor~' of the backtrack Undo of the same original PIE P. 
By dennition of initial and terlllina.l element, they are unique in the category. 

DO 

In Theroem 7.1 and Theorem 7.2, we established that pmax and pmin are 
a ki nel of upper and low('[" bou nel for any backtrack Undo P, in the sense that 
homomorphisms exist to and from the sets of reachable effects. Moreover, 
Theorem 7.5 shows tha.t pmua: and pmin are the unique initial and terminal 
PIE in t.he ca.tegory of the backtrack Undo of the sa:me original PIE P, so 
they are in fact t.ll(' grpa.test lo\\'er bound and lowest upper bounel. This 
means that for an~! PIE pb backtrack Undo of P, we cannot have more 
information th a n p1llr1,r nor less than pmin . 

7.7 Concluding discussion 

At the end of the last Section, we said that for any PIE pb backtrack Undo 
of P, we cannot. have more information than pmax nor less than pmin. But 
we have not yet pxplained the meaning of these theorems within specific ap­
plica,tions software. To do this, we are going to explain, also with examples, 
the main charact<'l"istic of pnw,r and pmin. 
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7.7. CONGL UDING DISCUSSIO!\' 

In pmin, the set of states is composed by sequences of states, that is 
to any history provided as input a sequence of states corresponds. All the 
reached states are stored, besides the repetition of the initial state at the 
beginning of the sequence. It would be useless to store also such a repetition, 
because, by performing Undo at the initial state, the last would not change. 
This kind of system allows the user to only perceive the change of state, 
but he has no information on how such a state has been reached. The Undo 
function in minimal systems is simply given by a hutton or a menu item 
called Undo, but no information on the past actions is given. 

Conversely, in pma.7·, all the action history is stored. At any state, the 
user can have information on all the performed action. The most common 
representation of such information is h~' a list. 

If we look at real systems they often do not follow an undo policy con­
sistently throughout. However, given these limits, we can see systems which 
examplify minimal or maximal undo behaviour: 

An example of maxima.l system is given by Word 6. As we discussed 
in Chapter 5, we ca.n consider its undo modes, (phases of using undos and 
redos), as a single vndo(n) command once the unclo mode is complete. At 
this level of abstraction the Undo mechanism is a pure backtrack Undo. If 
we the consider only the list of actions linked to the Undo icon, we have a 
maximal representation of the backt rack Undo. 

Although we know of no example of a minimal backtrack undo editor 
(perhaps because it would be too confusing to use), Emacs exemplifies this 
style of system. In Emacs there is a menu item Undo or Undo more, but 
there is no visualisation of the past actions or the position in the history. 
Actually, Emacs has and Undo mechanism which is neither a pure backtrack 
nor a flip Undo. In fact, an~' time t he user performs Undo, the reached state 
is not exactly the previous one but an its copy, so the equivalence is not 
strong. }.Ioreover, the behaviollr is not as the flip Undo, since the Undo 
of the Undo is not used as the Redo ("lInction. The behaviour of the Undo 
mechanism in Emacs is a kind of backtl'ack, but not. the pure one. However, 
its representat.ion is minimal, whit.hollt any information on the past states, 
so that the user can get lost while interacting. 

From the above analysis, the 111('<111 i I1g of t he theorems of homorphisl11s is 
obvious: interacting with maxillial s~'stems, any user could have more infor­
mation on the system state, and could feel more ill control of his dia.logue. 
For this reason, the cha.racteristic of maximality is very important, in order 
to increase the usability of an application software. During the develop­
ing phase of a.n application software. usua.lly the designer chooses the kind 
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of Undo that has to be implemented. Such a choice is done as a balance 
among the aim of the application, the user needs, the implementing effort, 
the cost (in sense of the necessary memory), etc. However, before choosing 
the the kind of Undo, the designer cannot leave out of consideration the 
internal structure of the Undo mecha.nism. By applying formal approaches, 
behaviour and properties of different Undo mechanism are described and the 
designers should use such information in order to choose the most suitable 
Undo mechanism, so allowing an easy a.nd fruitful intera.ction. 



Conclusions 

Many users when interacting \vith computers make mistakes which must be 
men aged and, possibly, eliminated. For this purpose, within HeI, recovery 
functions have been introduced. One of such function is Undo. 

In this thesis, the Undo scope has been analysed. Such an analysis has 
been performed at three levels, first by describing different recovery func­
tions; then by exploring the kinds of Undo mechanisms; finally, by formally 
characterising the behaviour of a. class of Undo mechanism, the backtrack 
Undo. 

In the first case, depending on the interaction level, we subdivided all the 
recovery function in three classes: the ordinary recovery functions, available 
if using reactive systems; the implicit undo, available if interacting with the 
operating system; and the explicit undo (Undo), available when interacting 
with an application software. Actually, the three classes do not represent a 
partition of recovery fu nctiolls; in fact, at the application level, a user can 
employ both explicit and implicit undo, while at the file level a user can 
employ implicit undo or any ordinary recovery function. Moreover, it is also 
possible to perform any ordinary recovery function at the application level, 
since, by applying some system fu nctions, the worki ng environment may be 
changed, moving from the application level to the file one, in which any 
ordinary recovery function may be lIsed. This fact suggested the following 
hierarchy: RS C HOSI c HAl, where RS indicates reactive systems, 
HOS I indicates human-operating system interaction, while HAl indicates 
human-application interaction. The inclusions are based on the availability 
of recovery functions: the inner set (HAl) is the "richest", the outer one 
(RS) is the ·'poorest". In fact, in H.41 any kind of recovery function may be 
applied, explicit undo, implicit undo and ordinary recovery functions, while 
in RS only ordinary recovery fu nctions are a,vailable. 

A breadth analysis of the Undo scope showed that there is more than one 
kind of Undo. Basically, we can distinguish all the Undo mechanisms into 

iSS 
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two classes, one in which Undo is self-applicable, i.e. the effect of an Undo 
may be deleted by applying another Undo, and the other one in which Undo 
is not self-applicable, so that Undo of Undo may be used as a backtrack tool. 

A taxonomy of different kinds of Undo has been proposed. Such a tax­
onomy considers the repetition of Undo (if Undo of Undo is allowed or not) 
and its granularity (if an Undo cancels only one action or a block of ac­
tions). A similar analysis has also been done adding the Redo function, and 
a taxonomy of Undo - Redo mechanism has been proposed. 

The choice of the kind of Undo to develop a particular application is 
usually done by the designer which keeps a balance on the aiin of the ap­
plication, the user needs, the implementing effort, the cost (in sense of the 
necessary memory), etc. However, before choosing the the kind of Undo, 
the ciesigner cannot leave out the internal structure of the Undo mechanism. 
Among the different Undo mechanisms we chose the backtrack Undo and 
deep analysis on it ha.s been developed. A formal method, the PIE model, 
has been applied, in order to describe some properties of such a class of 
systems. 

After giving the definition of conservative encapsulation (which expresses 
the fa.ct that, given a. PIE P '"vithout Undo and its augmented system en­
riched with Undo, the system without Undo is still inside the augmented 
one), the definition of behavioural equivalence has been given and we proved 
that all the systems which are backtra.ck Undo of the same original PIE 
Pare behaviburally equivalent. This means that, from the user's point of 
view, they have the same behaviour. 

Since such an equivalence is in terms of the effective history, we do not 
have m lich informa.tion on the sets of sta.tes. However, in some sense, we can 
try to limit the set of states of any backtrack Undo, finding a suitable upper 
bound and lower bound. To this aim, we introduced two PIEs, pmax and 
pmin, \vhich arC.' the backtrack Undo of the same original PIE P, with the 
"biggest" and '·sma'!lc:st" set of states, respectively. 

We proved that fot' any backtrack Undo pb of the same PIE P, there 
exists a homomorphism from the set of states of pmax to tire one of pb and, 
similarly, there exists a. homomorphism from the set of states of pb to the 
one of pmin. Moreover, we proved tha.t the class of all the backtrack Undo of 
the same original system P is a category, whose initial and terminal elements 
are exactly pma.l' and pmin. Since pmax and pmin are initial and terminal 
objects in the category, then the two above mentioned homomorphisms are 
O-morphisms between pma.x ana pb , and between pb and pmin , and also 
that such 0- 111orphi8111s are unique. The consequence is that pmax and 
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pm in are the lowest upper bound and the greatest lower bound respectively. 
The meaning of this theorem is that we cannot have more "information" 

than pmax neither less than pmin. The maximal system allows the user to 
have as most information as possible on the system state, so reducing non­
determinism and allowing him to feel more in control of his dialogue. For 
this reason, during the development of an application software, the designers 
should also take into account the properties of interactive systems described 
by using some formal methods. In this way, the choice of a suitable Undo 
mechanism can increase the usability of the application software, allowing 
an easy and fruitful interaction. 

An obvious extensioil of this work is to formally describe the behaviour 
of the flip Undo (for which the Undo of the Undo is the Redo function) and 
also to prove for this class of systems the theorems of homomorphisms. 

Moreover, an analysis of the algebraic properties for systems with sin­
gle/multi ?tep Undo / Redo may be done. 

Considering the similarity between undo and history mechanisms, back­
track Undo properties are also useful to analys_e browsing for different inter­
action histories. 

A successive step may also be to. enlarge this discussion to the case of 
the multi-user environments. Some work on the formalisation of Undo in 
collaborative work has already been clone. HO\vever, it would be better to 
expi'ess properties of such systems with the same formal model. In this way 
a comprehensive view of interactive systems from the point of view of their 
undo mechanisms may be obtained . 





Bibliography 

[1] G.D. Abowd. Formal Aspects of Human-Computer Interaction. Techni­
cal monograph PRG-97, Department of Computer Science, University 
of Oxford, 1991. 

[2] G.D. Abowd and R. Beale. Users, systems and interfaces: A unifying 
framework for interaction. In D. Diaper and N. Hammond, editors, 
Proc. of Hcr91 , People and Computers VI, pages 73-87. Cambridge 
University Press, 1991. 

[3] G.D. Abowd and A .. J. Dix. Giving undo attention. Interacting with 
Computers, 4(3) :317-342, 1992. 

[4] J.E. Archer, R. Conway, and F.B. Schneider. User recovery and reversal 
in interactive systems. ACM Transactions on Programrning Languages 
and Systems, (6):1-19, 1984. 

[5] A.N. Badre. Methodological Issues for Interface Design: a User­
Centered Approach. Research Report DI/DS - 9:3/01, University of 
Rome, 'La Sapienza', 199:3. 

[6] R.W. Bailey. Human Performance Engi,rteering: a Guide for System 
Designers. Prentice HaH, 1982. 

[7] M. Barr and C. Wells. C'ate.r;or·y Theory for Compu.ting Science. Prentice 
Hall, 199·5. 

[8] J.D. Barrow. The wodd tcithin the world. Oxford University press, 
1988. 

[9] R. Bastide and P. Palanque. Petri Nets with objects for the design, 
validation and prototyping of user-driven interfaces. In Proceedings IN­
TERACT'90, pages 62.5-6:31. Elsevier Science Publisher B.V., 1990. 

1·59 



160 BIBLIOGRAPHY 

[10] R. Bastide and P. Palanque. Petri Net based design of User-driven In­
terfaces using the Interactive Cooperative Objects Formalism. In F. Pa­
tern6, editor, Interactive Systems: Design, Specification and Verifica­
tion, pages 383-400. Springer Verlag, 1994. 

[11] C. Batini, Cerry, and Navathe. Conceptual Database Design. Benjamin 
Cunnings, 1992. 

[12] T. Berlage. A selective undo mechanism for graphical user interfaces 
based on command objects. ACM Transactions on Human Computer 
Interaction, (1) :269-294, 1994. 

[13] S. Bovair, D.E. I\:ieras, and P.G. Polson. The acquisition and perfor­
mance of text-editing skill: a cognitive complexity analysis. Human­
Computer IntE1'Oction, 5(1):1-48,1990. 

[14] D.P. Bovet and P. Crescenzi. Teoria della complessita. computazionale. 
Fra.nco Angeli, 1991. 

[1.5] P. Brun and lVL Beaudouin-Lafon. A Taxonomy and Evaluation of 
Formalisms for the Specification of Interactive Systems. In G. Cockton, 
S.W. Draper, and G.R.S. Weir, editors, Proc. of HCI'94, People and 
Computers IX, pages 197-212. Cambridge University Press, 1994. 

[16] V. Bush. As we may think. The Atlantic Monthly, 176(.July):101-108, 
1945. 

[17] S.I\:. Card, T.P. :t-/Joran, and A. Newell. The Psychology of Human­
Computer Interaction. Lawrence Erlbaum, 1983. 

[18] .1.1\:. Carroll, R.L. rdacJ.::, and vV.A. Kellogg. Interface Metaphors and 
User Interface Design. In Handbook of Hu.man-Cornputer Interaction, 
pages 67-85. North-Holland, 1988. 

[19] S.K. Chang, IvLF. Costabile, and S. Levia.1di. Modeling Users in an 
Aclaptative Visual Interface for Database Systems. Journal of Visual 
Languages and Computing, (4):143-159,1993. 

[20] S.K. Chang, IvLF Costa.bile, a.nd S. Levia.1di. Reality Bites - Progressive 
Querying ajld Result Visualization in logical and VR Spaces. In IEEE 
Symposium on Visua.l La.nguages, pages 100-109. IEEE Computer So­
ciety Press, 1994. 



BIBLIOGRAPHY 161 

[21] 1. Cole, M.W Lansdale, and B. Christie. Dialogue design guidelines. In 
Human Factors of Information Technology in the Office, pages 212-24l. 
Wiley, 1985. 

[22] M.F. Costabile and R. Mancini. A Methodological Framework to evalu­
ate the VENUS System in a Real environment. VENUS Esprit Project 
6398, External Deliverable DI-10/08-010, Gesi, Gestione Sistemi per 
l'lnformatica, 1994. 

[23] J. Coutaz. PAC, an object oriented model for dialogue design. In 
H.J. Bullinger and B. Shackel, editors, Human-Computer Interaction, 
INTERACT'87, pages 431-4:36. Elsevier Science Publisher B.V., 1987. 

[24] A.M. Dearden and M.D. Harrison. Modelling Interaction Properties for 
Interactive Case Memories. In F. Paterno, editor, Interactive Systems: 
Design, Specification and Verification, pages 301-316. Springer Verlag, 
1994. 

[2.5] A. Dix. Formal methods. In Perspective in HCI -Diverse Approaches, 
chapter 2, pages 9-4:3. ACl/I Press, 1995. 

[26] A. Dix and M. Harrison. Formalising Models of Interaction in the Design 
of a Display Editor. In H.J. Bullinger and B. Shackel, editors, Human­
Computer Interactio'n, INTERA CT'87, pages 409-414. Elsevier Science 
Publisher B.V., 1987. 

[27] A .. J. Dix and C. Runciman. Abstract models of interactive systems. In 
P. Johnson and S. Cook, editors, People and Computers: Designing the 
Interface P Proceedings of HCT85, pages 1:3-22. Cambridge University 
Press, 198·5. 

[28] A.J. Dix. Formal Methods and Interactive Systems: Principles and 
Practice. D.phil. thesis, ycst 88/08, Department of Computer Science, 
University of York, 1987. 

[29] A.J. Dix. Formal Methods for In teractive Systems. Academic Press, 
1991. 

[30] A.J. Dix. Que Sera Sera - The Problem of Future Perfect in Open and 
Cooperative Systems. In G. Cockton, S.W. Draper, and G.R.S. Weir, 
editors, Proc. of HCI'94, People and Computers IX, pages 397-408. 
Cambridge University Press, 1994. 



162 BIBLIOGRAPHY 

[31] A.J. Dix. Closing the Loop: Modelling action, perception and infor­
mation. In Pmc. of the Int. vVorkshop on Advanced Visual Interfaces 
A VI'96, pages 20-28. ACM Press, 1996. 

[32] A.J. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Inter­
action. Prentice Hall, 1993. 

[33] A.J. Dix, .J. Finlay, and .J. Hassell. Environments for Cooperating 
Agents: Designing the Interface as a Medium. In CSCW and Artifi­
cial Intelligence, pages 23-37. Springer Verlag, 1994. 

[34] A.J. Dix, R.. Mancini, and S. Levialdi. Action, Communication and 
History. to appea,r in Proc. of CHI'97, Technical Notes. 

[35] A .. J. Dix, R.. Mancini, and S. Levialdi. Alas I have undone - Reducing 
the risk of interaction? In Ancillary Proceedings of HCJ'96, pages 51-
.56. The British I-iCI Group, 1996. 

[36] D. Duke, G. Faconti, .!'v1. Harrison, and F. Patern6. Unifying Views of 
Interactors. In Pmc. of the Int. Workshop on Advanced Visual Interfaces 
A VJ'96, pages 1-1:3-152. ACM Press, 1996. 

[37] A.E. Fischer and F.S. Grodzinsky. The Anatomy of Programming Lan­
guages. Prentice-Ha.II, Inc., 199:3. 

[38] :tvI Green. A survey of Three Dialogue Models. ACM Transactions on 
Graphics, .5(:3):2"14-275, 1986. 

[:39] rv!. I-Ia,rrison and A. Dix. A state model of direct manipulation in in­
teractive systems. In Formal Methods in Human-Computer Interaction, 
chapter 5, pages 129-152. Cam bridge University Press, 1990. 

[40] tv!. Harrison and H. Thimbleby, editors. Formal Methods in Human­
Computer In.teraction. Cambridge University Press, 1990. 

[41] ISO. ISO 9126: Software product evaluation - Q'uality characteristics 
and guidelines for their use, 1991. 

[42] ISO. ISO DIS 92.{1-11: Guidelines for specifying and measuring usabil­
ity, 1993. 

[43] C. Johnson. Time and the Web: Representing and Reasoning about 
Tempora.l Properties of Intera.ction with Distributed Systems. In 



BIBLIOGRAPHY 163 

M.A.R. Kirby, A.J. Dix, and J .E. Finlay, editors, Proc. of HCI'95, 
People and Computers X, pages 39-50. Cambridge University Press, 
1995. 

[44] M.W. Lansdale and T.C. Ormerod. Understanding Interfaces. Aca­
demic Press, 1994. 

[4.5] G.B. Leeman. A Formal Approach to Undo Operations in Program­
ming Languages. A CM Tr-ansactions on Progmmming Languages and 
Systems, 8(1):50-87, 1986. 

[46] S. Levialdi, P. Mussio, M. ProttL and 1. Tosoni. Reflection on Icons. In 
IEEE Symposium on Visual Languages, pages 249-254. IEEE Computer 
Society Press, 199:3. 

[47] H.R. Lewis and C.H. Papadimitriou. Elements of theory of computation. 
Prentice-Hall, 1981. 

[48] .J.C.R. Licklider. Man-computer symbiosis. IRE Transactions on Hu­
man Factors in Electronics HFE, 1(1):4-11,1960. 

[49] P. Linz. An Introduction to Formal Languages and Automata. D.C. 
Heath and Company, 1990. 

[50] 1. Macaulay. Human-Computer Interaction for Software Designers. In­
ternational Thompson Computer Press, 1995. 

[51] M. Macleod. An introduction to Usability Evaluation. NPL Report 
DICT 102/92, National Ph~rsical Laboratory, UK, 1971. 

[52] M. rvIacleod. An Introduction to Usability Evaluation. NPL Report 
DICT 102/92, National Physical Laboratory, UK, 1992. 

[.53] F. Maddix. Human-Computer Inter'action, Theory and Practice. Ellis 
Horwood Limiteel, 1990. 

[54] .J. IVlaissel, M. 1'1a.cleod, A. Dillon, C. Thomas, R. Rengger, M. Maguire, 
M. Sweeney, and R. Corocran. Context guidelines handbooks, Version 
2.1, 1993. 

[5.5] R. Mancini. Interacting with a Visual Editor. In Proc. of the Int. 
'Workshop on Advanced Visual Interfaces Avr96, pages 12.5-131. ACM 
Press, 1996. 



164 BIBLIOGRAPHY 

[56] R,. Mancini, A. Dix, and S. Levialdi. Formal and Informal Definitions 
of Undo. Research Report RR9611, School of Computing and Mathe­
matics, University of Huddersfield, UK, 1996. 

[57] M. De Marsico and R. Mancini. Usability through Iconic InterfaceS'. In 
Proc. of QZCHI'93, pages 264-266. CHI Special interest Group of the 
Ergonomics Society of Australia, 1993. 

[.58] R.B. Miller. H lIma,n ease of use criteria and their trade-offs. IBM Report 
TROO.2185, Poughkeepsie, NY:IBM Corporation, 1971. 

[.59] R. Milner. Commtmicai'ion and concurrency. Prentice Hall, 1988. 

[60] R.N. Moll, M.A. Arbib, and A .. J. Kfoury. An Introduction to Formal 
Lang'lwge Theory. Springer-Verlag, 1987. 

[61] S .. J. Mountford. What can Users tell about User Interface? In Proc. of 
the Int. Workshop on Advan.cr:d Visual Interfaces AVI'92, pages 103-
107. World Scientific Press, Singapore, 1992. 

[62] B. A. Myer~ and D. S. Kosbie. Reusable hierarchical command ob­
jects. In Proceedings of CIII 96. Vancouver, BC, Canada, pages 260-
267. ACNI Press, 1996. 

[63] .J. Nielsen, editor. Usability Engin.eering. AP Professional, 1993. 

[64] D.A. Norman. Categorisation of action slips. Psychological Review, 
(88):1-1.5,1981. 

[65] D.A. Norman. Cognitive Engineering. In D.A. Norman and S. Draper, 
editors, User-CentC1wl System, Design, pages 31-62. Erlbaum, 1986. 

[66] A. Monk P. \Vright and M. Harrison. State, displa.y an undo: a study 
of consistency in display based interaction. Technical report, University 
of York, 1992. 

[67] P. Palanque and R. Bastide, editors. Proc. of the Eurographics Work­
shop on Design, Specification a.nd VerZfi.cation of Interactive Systems 
'95. Springer Verlag, 1995. 

[68] F. Paterno, editor. Interactive Systems: Design, Specification and Ver­
ification. Springer Verlag, 1994. 



BIBLIOGRAPHY 16,5 

[69] F. Paterno. Formal Methods for Multimodal Interactive Systems. In 
Tutorial 11, HCI'96. The British HCI Group, 1996. 

[70] J. Pearsall and B. Trumble, editors. The Oxford English Reference 
Dictionary. Oxford University Press, 1995. 

[71] G.E. Pfaff. User Interface Management System. Springer Verlag, 1985. 

[72] A. Prakash and M . .J. I\:nister. Undoing Actions in Collaborative 
Work. In CSCTV'.92 Shal'ing Perspectives, Proc. of the Conference on 
Computer-Supported Collaboratiue Work, pages 27:3-280. ACM Press, 
1992. 

[73] J. Preece and 1. I\:eller, editors. Human-Computer Interaction, Selected 
Readings. Prentice Hall, 1990. 

[74] T.V. Raman and D. Gries. Interactive Audio Documents. Journal of 
Visual Languages and Computing, (7):97-108,1996. 

[7.5] C. Rouff. Formal Specification of User Interfaces. A CAl SIGCHI Bul­
letin, 28(:3):27-:3:3, 1996. 

[76] C. Runciman. From abstract models to functional prototypes. In Formal 
Methods in Human-Computer Intemction, chapter 7, pages 201-2:32. 
Cambridge University Press, 1990. 

[77] D.E. Rydeheard and R.lvJ. Burstall. Computational Category Theory. 
Prentice Hall, 1988. 

[78] A. Salomaa. Formal Languages. Acaclemic Press, 197:3. 

[79] F. Schile and T. Green. HeI formalisms and cognitive psychology: the 
case of task-action grammars. In Formal llfethods in Human-Computer 
Interaction, chapter 2, pages 9-G2. Cambridge University Press, 1990. 

[80] B. Shackel and Richardson, editors. Human Factors for Informatics 
Usability. Cambridge University Press, 1991. 

[81] B. Shneiderman. The future of interactive systems and the emergence of 
direct manipulation. Behal'iouT' and Info7'1nation Technology, 1 (3) :2:37-

256, 1982. 

[82] A. Silberschatz and P. Galvin. Operating Systems Concepts -Fourth 
Edition. Addison-Wesley, 199-J. 



166 BIBLIOGRAPHY 

[83] R. M. Stallman. EMACS: The extensible, customizable self- document­
ing display editor. ACM SIGPLAN Notices, 16(6):147-156, 1981. 

[84] H.W. Thimbleby. User Interface Design. Addison Wesley, 1990. 

[85] S. Treu. User Interface Design - A Structured Approach. Plenum Press, 
1994. 

[86] .J .S. Vitter. US&R: A new framework for redoing. IEEE Software, 
1(4):39-.52,1984. 

[87] P. Wegner. Tradeoffs between Reasoning and Modeling. In Research Di­
rections in Concllrrent Object-Oriented Programlning, chapter 2, pages 
22-4l. :MIT Press, 199:3. 

[88] Y. Yang. Undo support models. International.]ournal of Man-Machine 
Studies, (28):4.57-481,1988. 

[89] R.M. Young and G.D. Abowd. Multi-Perspective Modelling of Inter­
face Design Issues: Undo in Collaborative Editor. In G. Cockton, S.W. 
Draper, and C.R.S. Weir, editors, Pmc. of HCI'94, People and Com­
puters IX, pages 2·19-260. Cambridge University Press, 1994. 


